УДК 539.142

ИЗУЧЕНИЕ АНОМАЛИЙ В ПРОЦЕССЕ ВНУТРЕННЕЙ КОНВЕРСИИ у-ЛУЧЕЙ ²³⁴Ра

И. Н. Вишневский, С. С. Драпей, В. А. Желтоножский, А. Г. Зелинский, Н. В. Стрильчук

Институт ядерных исследований НАН Украины, Киев

Проведены точные измерения энергии и коэффициента внутренней конверсии на К-оболочке γ -перехода с энергией 112,8 кэВ 234 Ра. Получено значение $E_{\gamma}=112,790\pm0,002$ кэВ и $\alpha_{K}=0,220\pm0,011$. Экспериментальное значение α_{K} отличается на (21-23) % от теоретических, что трактуется как проявление корреляционных эффектов в процессе внутренней конверсии γ -лучей.

Введение

При фотоэффекте на внутренних оболочках атома во время движения электрона внутри оболочек возникает корреляционное взаимодействие электрона со связанными электронами атома. Это приводит к известным корреляционным эффектам [1]. Они могут быть значительными при малых энергиях вылетающих электронов, что происходит при энергиях фотонов ионизации, близких к энергии связи электрона, т.е. в припороговой области.

Аналогичные явления могут происходить в процессе внутренней конверсии у-лучей при энергиях ядерных переходов, близких к энергии связи оболочки, из которой вылетает электрон.

Такая ситуация наблюдается в ядре 234 Pa. В нем имеется уровень, который разряжается γ -переходом $E_{\gamma}=112,8$ кэВ, энергия которого всего на $\approx 0,2$ кэВ больше энергии связи K-электронов E_k (Pa) = 112,598 кэВ. При внутренней конверсии этого перехода на K-оболочке вылетающий электрон будет иметь очень малую кинетическую энергию $\approx 0,2$ кэВ и можно ожидать значительные аномалии в коэффициентах внутренней конверсии (КВК) из-за корреляционных эффектов.

Такие исследования выполнены ранее в работе [2] и была обнаружена значительная роль корреляционных эффектов в 187 Re и 234 Pa. Однако точность измерения как энергии γ -квантов, так и вероятности процесса внутренней конверсии γ -переходов с энергией 112,8 кэВ на К-оболочке (α_{κ}) 234 Pa была недостаточной. В настоящей работе нами с помощью полупроводниковых спектрометров и новых методов обработки спектров, разработанных в последнее время, были проведены измерения как α_{κ} (112,8 кэВ), так и существенно повышена точность измерения энергии этого $E_{\gamma} = 112,8$ кэВ перехода.

Экспериментальная методика и результаты измерений

При очень малых кинетических энергиях конверсионных электронов измерять абсолютные

значения КВК можно только сравнением интенсивности характеристического излучения (I_{Kx}), сопровождающего конверсию, с интенсивностью γ -излучения I_{γ} . Для внутренней конверсии на K-оболочке КВК α_{κ} будет определяться по формуле

$$\alpha_K = I_{K_n} / I_{\gamma} \omega_{K_{\gamma}}, \tag{1}$$

где $\omega_{K_{x}}$ – выход флуоресценции [4].

Измерения вероятности процесса внутренней конверсии γ -лучей проводились на рентгеновском γ -спектрометре с германиевым детектором, который имел входное бериллиевое окно, объем детектора составлял 1 см³ и разрешение 400 эВ на γ -линии с энергией E = 63 кэВ.

Измерения $\alpha_{\rm K}$ $\gamma 112,8$ кэВ 234 Ра проводились с источником из естественного урана, продуктом равновесного распада которого является 234 Тh (рис. 1). Распад 238 U происходит по цепочке 238 U \rightarrow 234 Th \rightarrow 234 Pa. Характеристическое K_x -излучение 234 Pa обусловлено внутренней конверсией $\gamma 112,8$ кэВ. В K_x -спектрах протактиния присутствует также компонента K_x -излучения 231 Pa, соответствующая цепочке 235 U \rightarrow 231 Th \rightarrow 231 Pa.

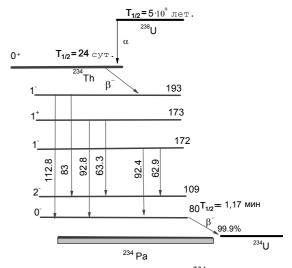


Рис. 1. Схема распада ²³⁴Th.

Распад активности мишени из естественного $^{238}{\rm U}$ толщиной $100~{\rm Mr/cm^2}$ измерялся в течение $10~{\rm сут}$. За это время была достигнута статистическая погрешность измерения ${\rm K_{\alpha l}}$ -линии протактиний $\leq 1~\%$. Характерные участки ${\rm K_{x^-}}$ и γ -спектров приведены на рис. 2. Активность $^{234}{\rm Pa}$ в спектрах идентифицируется по $\gamma 92$, а $^{231}{\rm Pa}$ по $\gamma 84~{\rm kp}$.

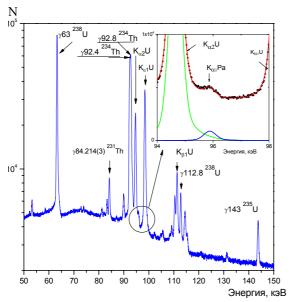


Рис. 2. Фрагмент у-спектра 234 Th, измеренный на Ge-спектрометре.

При определении величины КВК предполагалось, что K_{α} -линия ²³⁴Ра связана с внутренней конверсией только для у112,8 кэВ. Этот вывод основан на анализе у-спектров из наших измерений и работ [3, 4]. Весь комплекс этих данных показывает, что все у-кванты, кроме у112,8, имеют энергию меньшую, чем энергия связи Кэлектронов. Доля К_х-излучения, образующаяся при распаде ²³¹Th, учитывается по интенсивности у84 кэВ, которая измерена нами со статистической погрешностью ≤ 1 % (см. рис. 2). Используя данные о соотношении γ84 кэВ и К_α Ра, взятые из [4], где они измерены с точностью ~ 7 % и используя внутреннюю калибровку по эффективности, определяем вклад 231 Th в K_{α} линии Pa. По нему можно было определить интенсивность K_{α}^{234} Ра (I_{Kx}). Используя полученное значение I_{Kx} и измеренную интенсивность I_{ν} γ -линии E_{ν} = = 112,8 кэВ, по формуле (1) получили значение KBK $\alpha_{\kappa} = 0.220(1)$.

При сравнении экспериментальных значений с теоретическими необходимо выбрать какую-то модель расчета КВК. Значение КВК для Е1-переходов наиболее сильно зависит от того, выполняется ли учет вакансии, образующейся в оболочке после вылета электрона. Для ²³⁴Ра таблич-

ные значения $\alpha_{\kappa} = 0,277$ без учета вакансии были рассчитаны из таблиц [5]. Учет вакансии приведет к увеличению α_{κ} на 2 %. Таким образом, $\alpha_{K}^{meop.}$ завышено по сравнению с $\alpha_{K}^{\mathfrak{scn.}}$ на $\alpha_{K}^{meop.} - \alpha_{K}^{\mathfrak{scn.}}$

$$P^{_{^{3KCR.}}} = \frac{\alpha_K^{^{meop.}} - \alpha_K^{^{3KCR.}}}{\alpha_K^{^{meop.}}} = (21 \pm 4)$$
 %, если не учитывать

роль вакансий и на (23 ± 4) % при ее учете.

При анализе данных о КВК необходимо знать с высокой точностью энергию γ-кванта, поскольку это существенно влияет на выбранное теоретическое значения КВК. Нами были проведены специальные измерения энергии изучаемого перехода на полупроводниковом спектрометре с Siдетектором, который имел энергетическое разрешение 350 эВ на γ63 кэВ, и измерена кривая эффективности спектрометра от энергии в области 60 - 120 кэВ. В качестве примера на рис. 3 приведен фрагмент спектра в области γ112,8 кэВ.

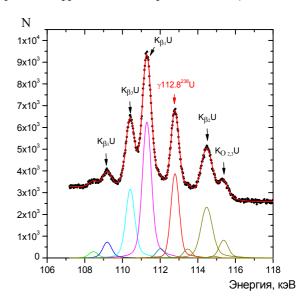


Рис. 3. Участок γ -спектра в области K_{β} -линий урана, измеренный на Si-спектрометре. Внизу по-казано разложение спектра с учетом вычтенного фона.

При измерениях на полупроводниковых спектрометрах важное значение имеют выбор нормалей, дифференциальная нелинейность спектрометра и способ обработки. Современные способы обработки позволяют определять положение линии с относительной точностью $(0,05\pm0,01)$ %. Отсюда следует, что определение энергии у112,8 кэВ с точностью (1-2) эВ требует того, чтобы одна из у-нормалей отстояла не дальше, чем на (2-3) кэВ. При таких точностях проводить отдельно измерения положения нормалей и исследуемой у-линии не представляется возможным, так как, несмотря на то что интегральная нелинейность в нашем спектрометре была $\leq 0,1$ %, исключить методические

была $\leq 0,1$ %, исключить методические ошибки, связанные с каким-то изменением внешних условий, не представлялось возможным. Поэтому в нашем эксперименте проводилась внутренняя энергетическая калибровка по наиболее сильным $K_{\alpha 1}$, $K_{\alpha 2}$ и $K_{\beta 1}$ линиям урана, энергии которых хорошо известны.

Обработка проводилась методом наименьших квадратов. Для этого в качестве табличной линии выбиралась нормаль γ 63 кэВ и вписывалась в виде свертки лоренциана с функцией отклика Si-детектора в K_x U, K_x Pa, γ 112,8 кэВ, γ 92,4 кэВ и γ 92,8 кэВ. При этом учитывалось, что естественная ширина K_α -линии составляет 82 эВ (расчет был выполнен без учета ширины L-дырок). С учетом того, что ширина приборной линии 350 эВ, на форме рентгеновских линий начинает сказываться естественная ширина K_α -линии описываются лоренцевским распределением, а приборная — гауссовским, появляются "хвосты" в K_α -линиях, измеренных на полупроводниковых спектрометрах.

Разброс значений измеренных энергий всех исследованных γ - и K_x -переходов во всех сериях не выходил за пределы 1,4 эВ. Однако нами использовались табличные значения энергий K_x -линий урана, а они в разных таблицах различаются на 1 эВ [3, 4]. Кроме того, в качестве основных реперов использовались K_β -линии урана, где присутствуют слабые компоненты K_β Pa (см. рис. 3). Все это приводит к дополнительной погрешности, поэтому точность измерений γ 112,8 ограничена 2 эВ. С учетом всего вышеизложенного было получено, что значение энергии E_{γ} (Pa) = 112,790(2) кэВ.

Обсуждение результатов

В таблице приведены полученные данные о $\alpha_K^{\text{эксп.}}$ $\alpha_K^{\text{meop.}}$ и другие параметры, характеризующие даный γ -переход.

Е _у , кэВ	112,790
E_{γ} - E_{K} , $\ni B$	192
Г, эВ	82
$lpha_{\scriptscriptstyle K}^{^{_{_{^{>\!$	0,220(11)
$lpha_{\scriptscriptstyle K}^{\scriptscriptstyle meop.}$	0,277

Здесь Γ — естественная ширина К-подоболочки (расчет был выполнен без учета естественной ширины L-подоболочки); $\alpha_K^{meop.}$ — табличное значение α_K из [5]; $\alpha_K^{sscn.}$ - значение, полученное в данной работе.

Как видно, наблюдается значительное отличие $\alpha_K^{^{3\kappa cn.}}$ от теоретических значений. Так как

значительно меньше $\alpha_{\scriptscriptstyle K}^{\scriptscriptstyle meop.}$, примесь М2-компоненты, как и неучтенных слабых у-квантов большей энергии, только увеличит расхождение, следовательно, эти факторы можно не анализировать. Роль эффектов проникновения в у-переходах непосредственно оценить нельзя. Однако из анализа схемы уровней ²³⁴Pa, заселяемых при β -распадах ²³⁴Th, следует, что γ -переходы с энергией 92,4 и 112,8 кэВ разряжают состояния одинаковой природы на одно и то же низколежащее состояние (см. рис. 1). Данные о КВК 92,4 кэВ показывают, что это Е1-переход, в процесс внутренней конверсии которого не дают значительного вклада эффекты проникновения. Поэтому можно сделать предположение, что и в случае у112,8 кэВ эффекты проникновения не могут повлиять на изменение величины α_{κ}

Из результатов нашей работы можно сделать вывод, что отличие α_{κ} от табличных значений обусловлено именно корреляционными эффектами.

Теоретические оценки наблюдаемого явления можно сделать, исходя из того факта, что виртуальные и реальные процессы при малых энергиях электронов описываются одинаково. В [1] эти процессы при фотоионизации обсуждались наиболее полно. Нами сделано предположение, что процесс внутренней конверсии при кинетических энергиях конверсионных электронов < 1 кэВ аналогичен фотоионизации и учет корреляционных эффектов при использовании такого же подхода к процессу внутренней конверсии у-лучей приводит к появлению дополнительного слагаемого (Р) в вероятности внутренней конверсии. Теоретические оценки этого явления были сделаны в [2], где было показано, что дополнительное слагаемое определяется соотношением кинетической энергии конверсионного электрона и естественной ширины линии.

Из наших данных следует, что $P^{\text{теор}}(Pa) = 0.21$ $P^{\text{эксп}}(Pa) = 0.23(4)$ с учетом вакансии и $P^{\text{эксп}}(Pa) = 0.21(4)$ без учета вакансии на K-оболочке соответственно.

Как видно, в ²³⁴Ра согласие между теоретическим и экспериментальным значениями хорошее. Отметим также, что полученные нами как экспериментальные значения, так и теоретические оценки согласуются с расчетами, выполненными в работе [6].

Поэтому из всего изложенного выше можно сделать вывод, что наблюдаемые отклонения экспериментальных КВК от табличных могут трактоваться как проявление корреляционных эффектов в процессе внутренней конверсии у-лучей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Амусья М.Я.* Фотоэффект. Л.: Наука, 1987.
- 2. Бондарьков М.Д., Желтоножский В.А., Зелинский А.Г. и др. Исследование корреляционных эффектов в процессе внутренней конверсии у-лучей // ЖЭТФ. 1996. Т.110, вып. 2(8). С. 443 449.
- 3. *Table* of radioactive Isotopes / Ed. by E. Browne et al. . New York: John Wiley Inc., 1986.
- 4. Table of Isotopes / Ed. by R. B. Firestone. New

- York: J. Wiley and Sons, 1996.
- 5. Hager R.S., Seltzer E.C. Internal Conversion Tables. P. I. 30 < Z < 103 // Nucl. Data Tables. -1968. Vol. A4. P. 1 135.
- 6. Амусья М.Я., Листенгартен М.А., Шапиро С.Г. // Изв. АН СССР. - Сер. физ. - 1968. - яТ. 32 -С. 1415.

ВИВЧЕННЯ АНОМАЛІЙ У ПРОЦЕСІ ВНУТРІШНЬОЇ КОНВЕРСІЇ у-ПРОМЕНІВ ²³⁴Ра

І. М. Вишневський, С. С. Драпей, В. О. Желтоножсський, А. Г. Зелінський, М. В. Стрільчук

Проведено точні вимірювання енергії та коефіцієнта внутрішньої конверсії на К-оболонці γ -переходу з енергією 112,8 кеВ 234 Ра. Отримано значення E_{γ} = 112,790 ± 0,002 кеВ і α_{K} = 0,220 ± 0,011. Експериментальне значення α_{K} відрізняється на (21 - 23) % від теоретичних, що трактується як прояв кореляційних ефектів у внутрішній конверсії γ -променів.

INVESTIGATION OF INTERNAL CONVERSION ANOMALIES IN 234Pa

I. N. Vishnevsky, S. S. Drapey, V. A. Zheltonozhsky, A. G. Zelinsky, N. V. Strilchuk

In the work presented the energy and K-shell internal conversion coefficient for γ -transition with the energy of 112,8 keV in 234 Pa were measured. The following estimates for $E_{\gamma} = 112,790 \pm 0,002$ keV and $a_{K} = 0,220 \pm 0,011$ have been obtained. The experimental value a_{K} differs by (21-23) % from the theoretical one and it can be treated as the demonstration of correlation effects in the internal conversion

Поступила в редакцию 04.03.06, после доработки – 26.04.06.