ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
On the results of nuclear fuel temperature dynamics restoration at the Chornobyl NPP unit 4 during active phase of the accident
O. V. Mikhailov*, A. O. DoroshenkoAbstract: Fuel temperature dynamics was reconstructed for active phase of the accident at the Chernobyl NPP Unit 4. Method of effective temperature calculation for uranium oxide is based on implementation of the CORSOR type mathematical codes and the model of lava-like fuel containing materials (LFCM) formation from fragments of the former core (FFC) in the room 305/2. Calculations were carried out according to release rate of 131I and 137Cs radionuclides during the period from April 26 until May 6, 1986. The rate of temperature drop during the FCM stage cooling bath silicate melt was estimated. It is shown that the main streams of LFCM could be formed at more moderate values of temperatures than it was performed previously. The results of the work are used to verify the “blast furnace” version of LFCM formation and formation of FCM with high uranium concentration.
Keywords: uranium, fuel-containing materials, 131I and 137Cs radionuclides, release rate of volatile fission products, power of accidental release, effective temperature.
References:1. E.Ì. Pazukhin. Lava-like fuel-containing masses of Chornobyl NPP Unit 4: topography, physicochemical properties, scenario of formation. Radiokhimija 36(2) (1994) 97. (Rus)
2. E.M. Pazukhin, A.A. Borovoj, A.S. Lagunenko, F.N. Kolomiets. Study of samples of lava-like fuel-containing materials taken from different depths of lava. Problemy Chornobylya 9 (2002) 66. (Rus)
3. V.À. Zhåltînîzhskij, Ì.V. Zhåltînîzhskaya, N.V. Êulich et al. Radionuclide composition of lava fuel-containing materials fragments from the 4th unit of the ChNPP NPP. Radiokhimija 53(5) (2011) 465. (Rus)
4. Ju.V. Sivintsev, A.A. Khrulev. Assessment of radioactive release during the accident at the 4th unit of the Chernobyl NPP in 1986. Atomnaja Energija 78(6) (1995) 403. (Rus); Atomic Energy 78(6) (1995) 390. https://doi.org/10.1007/BF02415265
5. A.A. Borovoj, A.Ju. Gagarinskij. Emission of radionuclides from the destroyed block of the Chernobyl NPP. Atomnaja Energija 90(2) (2001) 137. (Rus); Atomic Energy 90(2) (2001) 153. https://doi.org/10.1023/A:1011357209419
6. A.A. Borovoj, E.M. Pazukhin, V.F. Strizhov. Effectiveness of measures to eliminate the consequences of the Chernobyl accident (active phase of the accident). Preprint of «Kurchatovskij Institut» IAE-6471/11 (Moskva, 2007) 38 p. (Rus)
7. A.A. Rimskij-Korsakov, P.I. Fedotov, Ju.V. Dubasov et al. Study of radionuclide release from the emergency reactor of Chernobyl NPP Unit 4th. Trudy Radievogo instituta im. V.G. Khlopina XIX (2009) 10. (Rus) Article
8. S.A. Bogatov, A.A. Borovoj, S.L. Gavrilov et al. Database on the location and state of nuclear fuel of the 4th unit of the Chernobyl NPP before and after the accident. Preprint of «Kurchatovskij Institut» 130-11/2 (Moskva, 2007) 146 p. (Rus)
9. B.I. Ogorodnikov, E.M. Pazukhin, A.A. Kljuchnikov. Radioactive aerosols object “Ukryttya”: 1986 - 2006 (Chernobyl: Institut problem bezopasnosti AES, 2008) 456 p. (Rus) http://www.spsl.nsc.ru/Fulltext/CAT/2009/09-04-14/cont04f.htm
10. E.D. Vysotskij, A.A. Kljuchnikov, A.S. Lagunenko et al. Nuclear-dangerous accumulations of fuel-containing materials in the destroyed fourth block of the Chernobyl NPP. Radiokhimija 53(2) (2011) 178. (Rus); Radiochemistry 53(2) (2011) 206. https://doi.org/10.1134/S1066362211020160
11. S.A. Bogatov. Interaction of emergency fuel of the 4th unit of the ChNPP with structural materials - quantitative estimates. In: Objekt «Ukrytie» - 10 let. Osnovnye rezul'taty nauchnykh issledovanij (Chernobyl, 1996) p. 112. (Rus) http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/068/28068587.pdf
12. O.V. Zhydkov. 25 years of ideas evolution about fuel-containing materials of the Shelter object: scenarios of their formation and physical considerations. Problemy bezpeky atomnykh elektrostantsiy i Chornobylya 16 (2011) 86. (Ukr) http://dspace.nbuv.gov.ua/handle/123456789/112906
13. G.I. Petelin, Ju.I. Zimin, V.E. Tepikin, V.B. Rybalka et al. "Hot" particles of the nuclear fuel of the Chernobyl release in the retrospective assessment of the processes at the 4th unit of the ChNPP. Radiokhimija 45(3) (2003) 278. (Rus); Radiochemistry 45(3) (2003) 304. https://doi.org/10.1023/A:1026143430242
14. E.D. Vysotskij, V.A. Krasnov, A.S. Lagunenko, E.M. Pazukhin. Fuel in the room 305/2 of the 4th unit of the ChNPP. Critical mass zones. Specification of the scenario of formation of lava-like fuel-containing materials. Problemy Bezpeky Atomnyh Elektrostants³y ³ Chornobylya 8 (2007) 77. (Rus) Article
15. E.D. Vysotskij, A.V. Mihajlov. The conceptual model of the "dumb" version of the formation of nuclear-hazardous clusters at the 4th unit of the ChNPP. Problemy Bezpeky Atomnyh Elektrostants³y ³ Chornobylya 21 (2013) 99. (Rus) Article
16. V.V. Gonchar, A.V. Zhidkov. Dynamics of high-temperature interaction of emergency nuclear fuel with RBMK structural materials. Problemy Chornobylya 9 (2002) 25. (Rus)
17. V.S. Krasnorutskij, V.K. Jakovlev, A.P. Danilov et al. Microstructural analysis of lava-like fuel-containing masses. Voprosy Atomnoi Nauki i Tehniki 1 (2010) 60. (Rus) Article
18. V.S. Krasnorutskij, V.K. Jakovlev, A.P. Danilov et al. Investigation of the interaction of nuclear fuel with structural materials of the core beyond design basis accident. Voprosy Atomnoi Nauki i Tehniki 2 (2012) 56. (Rus) Article
19. V.A. Kashparov, Ju.A. Ivanov, S.I. Zvarich et al. Simulation of the formation of hot particles during the Chernobyl accident. Radiokhimija 36(1) (1994) 87. (Rus)
20. A.A. Borovoj, E.P. Velikhov. Chernobyl Experience (Work on the Project "Ukryttya"). Part 1 (Moskva: NITs «Kurchatovskij Institut», 2012) 168 p. (Rus)
21. R.V. Arutjunjan, L.À. Bol’shov, À.V. Vasil’ev, V.F. Strizhov. Physical Models of Severe Accidents on the NPP. Ed. N.N. Ponomarev-Stepnoj (Ìoskva: Nauka, 1992) 232 p. (Rus)
22. Technical Bases for Estimating Fission Product Behavior During LWR Accidents, NUREG-0772. U.S. Nuclear Regulatory Commission, Washington, June 1981. Report
23. Reassessment of Technical Bases for Estimating Source Terms. Final Report. NUREG-0956. U.S. Nuclear Regulatory Commission, Washington, July 1986. Report
24. United Nations. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000. Report to General Assembly. Annex J: Exposure and effects of the Chernobyl accident. (New York: UN, 2000) p. 453. Annex J
25. N.N. Talerko, E.K. Garger. Estimates of the primary release from the Chernobyl emergency unit using atmospheric transport modeling (review). Problemy Bezpeky Atomnyh Elektrostants³y ³ Chornobylya 5 (2006) 80. (Rus) Article
26. N.N. Talerko. Mesoscale modeling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. Journal of Environmental Radioactivity 78(3) (2005) 311. https://doi.org/10.1016/j.jenvrad.2004.04.008
27. N. Talerko. Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modeling. Journal of Environmental Radioactivity 84 (2005) 343. https://doi.org/10.1016/j.jenvrad.2005.04.005
28. A.A. Kljuchnikov, E.M. Pazukhin, Ju.M. Shigera, V.Ju. Shigera. Radioactive Wastes of the Nuclear Power Plants and Their Treatment Methods (Kiev: Institut Problem Bezopasnosti AES NAN Ukrainy, 2005) 487 p. (Rus) Book