Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 3, pages 254-262.
Section: Radiobiology and Radioecology.
Received: 12.05.2015; Accepted: 11.06.2015; Published online: 12.10.2015.
PDF Full text (en)
https://doi.org/10.15407/jnpae2015.03.254

Analysis of spatial distribution and inventory of radioactivity within the uranium mill tailings impoundment

D. O. Bugai1,*, G. V. Laptev2, O. S. Skalskyy1, T. V. Lavrova2, R. Avila3

1 Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Ukrainian Hydrometeorological Institute, National Academy of Sciences and State Emergency Service of Ukraine, Kyiv, Ukraine
3 Facilia AB, Bromma, Sweden


*Corresponding author. E-mail address: dmitri.bugai@gmail.com

Abstract: Results are presented of the characterization of radioactivity inventory of Zapadnoe uranium mill tailings impoundment situated at Pridneprovsky Chemical Plant (PChP; Dneprodzerzhinsk, Ukraine). Analyses of radioactivity data set based on analytical studies of core material from 15 characterization boreholes allowed significantly refining waste volume and radioactivity inventory estimates. Geostatistical analyses using variogram function have established that radioactivity distribution in Zapadnoe tailings is characterized by regular spatial correlation patterns. Ordinary kriging method was applied to assess distribution of radioactivity in 3D. Results of statistical analyses suggest significant redistribution of uranium in the dissolved form in the residues (presumably due to water infiltration process). The developed structural model for radioactivity distribution is used for further risk assessment analyses. Derived radioactivity correlation scales can be used for optimization of sample collection when characterizing the PChP Site and similar contaminated sites elsewhere.

Keywords: uranium mill tailings, Pridneprovsky Chemical Plant, characterization of radioactivity inventory, geostatistical analysis.

References:

1. T. Lavrova, O. Voitsekhovych. Radioecological assessment and remediation planning at the former uranium milling facilities at the Pridneprovsky Chemical plant in Ukraine. J. Env. Radioactivity 115 (2013) 118. https://doi.org/10.1016/j.jenvrad.2012.06.011

2. O. Skalskyy, D. Bugai, O. Voitsekhovitch et al. Groundwater monitoring data and screening radionuclide transport modeling analyses for the uranium mill tailings at the Pridneprovsky Chemical Plant Site (Dneprodzerginsk, Ukraine). In: The New Uranium Mining Boom: Challenge and lessons learned. Eds. B. Merkel, M. Schipek (Berlin: Springer - Verlag, 2011) p. 219. https://doi.org/10.1007/978-3-642-22122-4_26

3. D. Bugai, M.W. Kozak, J.J. van Blerk, R. Avila. Radiological Safety Assessment of the Zapadnoe Uranium Tailings Facility, Dnieprodzerzhinsk, Ukraine. Proc. of EU NORM 2 Symposium (Prague, 17 - 19 June, 2014). https://doi.org/10.13140/2.1.1575.5527

4. V.P. Protsak, V.O. Kashparov, V.K. Kyrychenko et al. Evaluation of the parameters of migration of the uranium series radionuclides in the tailings of the Pridneprovskiy chemical plant. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 14(1) (2013) 55. (Ukr) https://jnpae.kinr.kyiv.ua/14.1/Articles_PDF/jnpae-2013-14-0055-Protsak.pdf

5. F. de Corte, H. Umans, D. Vandenberghe. et al. Direct gamma-spectrometric measurement of the 226Ra 186.2 keV line for detecting 238U/226Ra disequilibrium in determining the environmental dose rate for the luminescence dating of sediments. Appl. Radiat. Isot. 63(5) (2005) 589. https://doi.org/10.1016/j.apradiso.2005.05.008

6. P.G. Appleby, N. Richardson, P.J. Nolan. Self-absorption corrections for well-type germanium detectors. Nucl. Instr. Meth. Phys. Res. B 71(2) (1992) 228. https://doi.org/10.1016/0168-583X(92)95328-O

7. Research and development of radioactive waste storage technology at the State Enterprise "Barrier". Analysis of the operations safety for the radioactive waste storage. Tailings "Zapadnoe". Assessment of the radioactive waste storage conditions: Report of the Ukrainian Scientific Research and Design Institute of Industrial Technologies. 2001 (Ministry of Fuel and Energy of Ukraine). State registration No. À-15969. Agreement 3032. 38 p. (Rus)

8. R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye. Probability and Statistics for Engineers and Scientists (London: Pearson Prentice Hall, 2007) 490 p. Google Books

9. P. Kitanidis. Geostatistics: Interpolation and Inverse Problems. In: The Handbook of Groundwater Engineering. Ed. J.W. Delleur (CRC Press, Boca Raton, 1999) 12-1. CRC Press

10. Practical aspects of applying geostatistics at hazardous, toxic, and radioactive waste sites: U. S. Army Corps of Engineers. Technical letter-report No. 1110-1-175 (Washington D.C., 1997) 125 p. Report

11. D. Bugai, V. Kashparov, L. Dewiere et al. Characterization of subsurface geometry and radioactivity distribution in the trench containing Chernobyl clean-up wastes. Environ. Geol. 47 (2005) 869. https://doi.org/10.1007/s00254-004-1218-6

12. C.V. Deutch, A.J. Journel. GSLIB. Geostatistical Software Library and User’s Guide (New York - Oxford: Oxford University Press, 1998) 369 p. Google Books

13. D.J. Mulla, A.B. McBratney. Soil Spatial Variability. In: Handbook of soil science. Ed. M.E. Sumner (CRC Press, Boca Raton, 2000) A-321. Google Books