= ТЕХНІКА ТА МЕТОДИ ЕКСПЕРИМЕНТУ=

УДК: 539.125.516.24; 539.125.518.3; 539.125.523.348

https://doi.org/10.15407/jnpae2015.03.303

О. О. Грицай¹, А. К. Гримало¹, В. А. Пшеничний²

¹ Інститут ядерних досліджень НАН України, Київ ² Державний науково-інженерний центр систем контролю та аварійного реагування, Київ

АНАЛІТИЧНІ ВИРАЗИ ДЛЯ РОЗРАХУНКІВ ВИХОДІВ РОЗСІЯНИХ НЕЙТРОНІВ ІЗ ЗРАЗКА-РОЗСІЮВАЧА ПІДМАЛИМИ КУТАМИ

Отримано аналітичні вирази для розрахунків виходів розсіяних нейтронів із двокомпонентного зразкарозсіювача CH₂ під кутами 15, 20, 25 та 30°. Проведено аналіз меж використання отриманих виразів залежно від структури досліджуваних нейтронних перерізів.

Ключові слова: двокомпонентний зразок-розсіювач, розсіяні нейтрони, метод пропускання, програмний код MCNP4c.

Необхідність написання даної роботи пов'язана з особливостями проведення експериментів для визначення набору повних нейтронних перерізів ⁵²Сгіз використанням методу зсуву нейтронної лінії фільтра. Так, наприклад, для визначення повних усереднених нейтронних перерізів при енергіях 48,4, 52 та 55 кеВ слід використати водень як зразок-розсіювач фільтрованого пучка 59 кеВ і провести вимірювання при кутах 15, 20 та 25°[1]. Однак через неможливість мати зразокрозсіювач з водню в експерименті [2] використовувався зразок-розсіювач поліетилен CH₂, а для того щоб врахувати ефекти, пов'язані з розсіянням нейтронів на вуглеці в поліетилені, проводились також вимірювання з використанням зразка-розсіювача вуглецю.

Якщо б ми використовували зразок-розсіювач водень, то при вимірюваннях на вибраному куті ми б отримали проходження зразка досліджуваного матеріалу (у даному випадку⁵²Cr) T_{Cr}^{H} , звідки за відомою формулою могли б визначити повний нейтронний переріз. Коли ми використовуємо зразок-розсіювач вуглець, то експериментально отримуємо проходження T_{Cr}^{C} зразка ⁵²Cr (енергія розсіяних нейтронів при цьому вибраному куті буде зовсім іншою, ніж при розсіянні на водні).

При використанні зразка-розсіювача CH₂ експериментально визначається проходження $T_{Cr}^{CH_2}$ зразка ⁵²Cr, яке можна представити через T_{Cr}^{H} та T_{Cr}^{C} як

$$T_{{}^{52}Cr}^{CH_2} = \frac{P_C^{\theta} \cdot T_{{}^{52}Cr}^{C} + P_H^{\theta} \cdot T_{{}^{52}Cr}^{H}}{P_C^{\theta} + P_H^{\theta}}, (1)$$

де P_{C}^{θ} , P_{H}^{θ} – кількість (потік) нейтронів, розсіяних під вибраним кутом θ на ядрах вуглецю та водню, що містяться у складі двокомпонентного зразка-розсіювача CH₂; $T_{s_{2}Cr}^{H}$ – проходження зразка ⁵²Cr для енергії нейтронів, що відповідають енергії розсіяних нейтронів на ядрах водню (розсіювач CH₂); $T_{s_{2}Cr}^{C}$ – проходження зразка ⁵²Cr для енергії нейтронів на ядрах водню (розсіювач CH₂); $T_{s_{2}Cr}^{C}$ – проходження зразка ⁵²Cr для енергії нейтронів на ядрах водню (розсіювач CH₂); $T_{s_{2}Cr}^{C}$ – проходження зразка ⁵²Cr для енергії нейтронів, що відповідають енергії розсіяних нейтронів на ядрах вуглецю(розсіювач вуглець).

Із співвідношення (1) можна визначити

$$T_{s_{2}C_{r}}^{H} = T_{s_{2}C_{r}}^{CH_{2}} + \frac{P_{C}^{\theta}}{P_{H}^{\theta}} (T_{s_{2}C_{r}}^{CH_{2}} - T_{s_{2}C_{r}}^{C}).$$
(2)

Вираз (1) отримано для розсіювача CH₂, у складі якого міститься вуглецю стільки, скільки в однокомпонентному розсіювачі вуглеці товщиною 2 мм. Реально в експерименті по визначенню проходження $T_{s^2C_r}^H$ досліджуваного зразка використовувався розсіювач вуглець товщиною 10 мм, вибір останнього пов'язаний із підвищенням потоку розсіяних нейтронів. Але і в такому випадку формула (2) є вірною, оскільки величина проходження $T_{s^2C_r}^C$ досліджуваного зразка при використанні розсіювача вуглецю товщиною 2 або 10 мм буде однаковою, відмінність лише у похибці визначення проходження, яка для вуглецю товщиною 2 мм буде гіршою.

Використовуючи формулу (2), легко розрахувати величину абсолютної похибки пропускання

$$\Delta T_{s_{2}}^{H} = \sqrt{\left(1 + \frac{P_{c}^{\theta}}{P_{H}^{\theta}}\right)^{2} \cdot \left(\Delta T_{s_{2}}^{CH_{2}}\right)^{2} + \left(\frac{P_{c}^{\theta}}{P_{H}^{\theta}}\right)^{2} \cdot \left(\Delta T_{s_{2}}^{C}\right)^{2} + \left(T_{s_{2}}^{CH_{2}} - T_{s_{2}}^{C}\right)^{2} \cdot \left(\Delta \frac{P_{c}^{\theta}}{P_{H}^{\theta}}\right)^{2}} .$$
(3)

© О. О. Грицай, А. К. Гримало, В. А. Пшеничний, 2015

Для визначення пропускання досліджуваного зразка $T_{s^2Cr}^H$ з використанням виразу (2) невідомим є співвідношення $P_C^{\theta} / P_H^{\theta}$. Саме визначенню цього співвідношення і присвячено наступний розгляд.

Розглянемо спочатку однокомпонентний зразок-розсіювач. На рис. 1 наведено спрощену схему експерименту. На розсіювач вуглець товщиною x_0 падає потік нейтронів Φ_H . Під кутом θ до початкового напрямку нейтронів на відстані *L* від центру зразка-розсіювача розміщено детектор з площею $S_{\text{дет}}$. Досліджуваний зразок розміщується між зразком-розсіювачем та детектором. Яка частина потоку Φ_H потрапить в детектор?

Рис. 1. Спрощена схема постановки експерименту по визначенню потоків розсіяних нейтронів під кутом θ . Φ_H – початковий потік фільтрованих нейтронів; C – зразок-розсіювач; L – відстань від центру зразкарозсіювача до детектора; $S_{\text{дет}}$ – площа детектора.

Умови розрахунку: радіус пучка нейтронів r_n набагато менший радіуса зразка-розсіювача $R_C; L >> r_n$.

Такі умови дають змогу вважати, що в детектор потрапляють нейтрони, розсіяні під кутом незалежно від місця розсіяння в зразкурозсіювачі.

Спочатку, для спрощення, знехтуємо перерізами поглинання нейтронів в зразку-розсіювачі С, тобто $\sigma_{C}^{tot} = \sigma_{C}^{posc.} \equiv \sigma_{C}$.

Диференційне рівняння для потоку розсіяних нейтронів під кутом θ , які потрапили в детектор площею $S_{\text{дет}}$:

$$dP_{C}^{\theta} = \Phi_{H} \cdot e^{-n_{C}\sigma_{C}x} \cdot n_{c} \cdot \frac{d\sigma(\theta)}{d\Omega} \cdot \frac{S_{\text{ger}}}{L^{2}} dx \cdot e^{-n_{C}\sigma_{C}'\frac{(x_{0}-x)}{\cos\theta}},$$
(4)

де n_C – кількість ядер зразка-розсіювача вуглецю в 1 см³; Φ_{H} – початковий потік нейтронів; σ_{C} , σ_{C}' – поперечні перерізи взаємодії нейтронів з ядрами розсіювача вуглецю до та після розсіяння відповідно; $\frac{d\sigma(\theta)}{d\Omega}$ – диференційний переріз розсіяння нейтронів під кутом θ в лабораторній системі координат (ЛСК); x₀ – товщина зразкарозсіювача.

Окремі складові виразу (4) відтворюють такі процеси:

 $\Phi_{H} \cdot e^{-n_{c}\sigma_{c}x}$ – ослаблення початкового потоку нейтронів товщиною розсіювача *x*;

 $n_c \cdot \frac{d\sigma(\theta)}{d\Omega} \cdot \frac{S_{\text{дет}}}{L^2} dx$ – частка розсіяних нейтро-

нів під кутом θ елементом dx;

$$\Delta \Omega = \frac{S_{\text{дет}}}{L^2} -$$
тілесний кут детектора (тілесний кут розсіяння);

$$-n \cdot \sigma' \cdot \frac{(x_0 - x)}{x_0 - x_0}$$

 $e^{-n_{c}\sigma_{c}}$ – ослаблення розсіяних нейтронів.

Для s-нейтронів (l = 0) диференційний переріз розсіяння в системі центра мас (СЦМ) є ізотропним, тобто

$$\frac{d\sigma(\psi)}{d\Omega} = \frac{\sigma_C}{4\pi},$$
(5)

де ψ – кут розсіяння нейтрона в СЦМ.

Диференційний переріз розсіяння в СЦМ та ЛСК пов'язані співвідношенням[3]

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{\left(1 + \frac{m_n^2}{M_c^2} + 2\frac{m_n}{M_c}\cos\psi\right)^{\frac{3}{2}}}{\left|1 + \frac{m_n}{M_c}\cos\psi\right|} \cdot \frac{d\sigma(\psi)}{d\Omega}, \quad (6)$$

де m_n – маса нейтрона; M_c – маса ядра-розсіювача; θ – кут розсіяння нейтрона в ЛСК, що відповідає куту ψ в СЦМ.

Як показано в [4], кути у та в пов'язані співвідношенням

$$\cos \psi = -\nu \cdot \sin^2 \theta + \cos \theta (1 - \nu^2 \sin^2 \theta)^{\frac{1}{2}}, \quad (7)$$

де $v = m_n / M_c$.

Скориставшись формулами (5) та (6), можна записати

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{\sigma_C}{4\pi} \gamma_C(\psi), \qquad (8)$$

де введено позначення

$$\gamma_{C}(\psi) = \frac{(1 + \nu^{2} + 2\nu \cos \psi)^{\frac{3}{2}}}{1 + \nu \cos \psi}.$$
 (9)

Відзначимо, що якщо розсіяння відбувається на водні, то

$$v = 1, \psi = 2\theta, \gamma_n(\psi) = \sqrt{8 \cdot (1 + \cos \psi)} .$$
 (10)

Інтегруючи (4) (для спрощення розрахунків будемо вважати, що $\sigma'_{C} = \sigma_{C}$), отримаємо потік нейтронів у тілесний кут $\Delta\Omega$:

$$P_C^{\theta} = \frac{B_0}{\alpha - 1} \gamma_C(\psi) \cdot (T - T^{\alpha}), \qquad (11)$$

де $B_0 = \Phi_H \frac{S_{\text{дет}}}{4\pi L^2}$, $\alpha = \frac{1}{\cos \theta}$, $T = \exp(-n_C \sigma_C x_0) -$

проходження фільтрованих нейтронів через товщину x_0 зразка-розсіювача; $T^{\alpha} = \exp(-n_C \sigma_C x_0 \alpha)$ проходження розсіяних нейтронів під кутом бу зразку-розсіювачі.

У випадку, коли зразки-розсіювачі складаються з одного елемента, але з різними товщинами, то відношення потоків розсіяних нейтронів для двох зразків буде виглядати як

$$\frac{P_{C1}^{\theta}}{P_{C2}^{\theta}} = \frac{T_{C1} - T_{C1}^{\alpha}}{T_{C2} - T_{C2}^{\alpha}},$$
(12)

де індекси C1 та C2 відповідають зразкамрозсіювачам із різними товщинами.

У випадку, коли $\sigma_C \neq \sigma_C$, формула (11) виглядає як

$$P_{C}^{\theta} = \frac{B_{0}}{\beta - 1} \gamma_{C}(\psi) \cdot (T - T^{\beta}), \qquad (13)$$

Розглянемо зразок-розсіювач із двох сортів ядер – вуглець та водень. Нехай концентрації цих ядер будуть n_C та n_H (ядер/см³), а перерізи розсіяння – σ_C та σ_H відповідно. Будемо вважати, що розсіяння переважає над поглинанням нейтронів, тому можна знехтувати перерізом поглинання. Якщо переріз взаємодії нейтрона після розсіяння не змінюється, тоді потік розсіяних нейтронів P_C^{θ} у детектор під кутом θ від ядер вуглецю дорівнює

$$P_{C}^{\theta} = \frac{B_{0}}{\alpha - 1} \cdot \frac{n_{C} \sigma_{C} \gamma_{C}(\psi)}{n_{C} \sigma_{C} + n_{H} \sigma_{H}} \times (e^{-(n_{C} \sigma_{C} + n_{H} \sigma_{H})x_{0}} - e^{-(n_{C} \sigma_{C} + n_{H} \sigma_{H})x_{0}\alpha}), \qquad (14)$$

а для ядер розсіювачів водню потік розсіяних нейтронів P_{H}^{θ} у детектор:

$$P_{H}^{\theta} = \frac{B_{0}}{\alpha - 1} \cdot \frac{n_{H} \sigma_{H} \gamma_{H}(\psi)}{n_{C} \sigma_{C} + n_{H} \sigma_{H}} \times (e^{-(n_{C} \sigma_{C} + n_{H} \sigma_{H})x_{0}} - e^{-(n_{C} \sigma_{C} + n_{H} \sigma_{H})x_{0}\alpha}).$$
(15)

Поділивши вираз (14) на (15), отримаємо відношення потоків розсіяних нейтронів від складових елементів вуглецю та водню двокомпонентного розсіювача CH₂:

$$\frac{P_c^{\theta}}{P_H^{\theta}} = \frac{n_c \sigma_c \gamma_c(\psi)}{n_H \sigma_H \gamma_H(\psi)}.$$
(16)

У випадку, коли $\sigma'_C \neq \sigma_C$ та $\sigma'_H \neq \sigma_H$ формули (14) та (15) виглядають так:

$$P_{C}^{\theta} = \frac{B_{0}}{\beta_{C} - 1} \cdot \frac{n_{C} \sigma_{C} \gamma_{C}(\psi)}{(n_{C} \sigma_{C} + n_{H} \sigma_{H})} \cdot (T - T^{\beta_{C}}), \quad (17)$$

$$P_{H}^{\theta} = \frac{B_{0}}{\beta_{H} - 1} \cdot \frac{n_{H} \sigma_{H} \gamma_{H}(\psi)}{(n_{C} \sigma_{C} + n_{H} \sigma_{H})} \cdot (T - T^{\beta_{H}}), \quad (18)$$

де

$$T = \exp(-(n_C \sigma_C + n_H \sigma_H) \cdot x_0);$$

$$T^{\beta_C} = \exp(-(n_C \sigma_C + n_H \sigma_H) \cdot x_0 \cdot \beta_C);$$

$$T^{\beta_H} = \exp(-(n_C \sigma_C + n_H \sigma_H) \cdot x_0 \cdot \beta_H);$$

$$\beta_C = \frac{n_C \sigma_C' + n_H \sigma_H'}{n_C \sigma_C + n_H \sigma_H} \cdot \frac{1}{\cos \theta};$$

$$\beta_H = \frac{n_C \sigma_C'' + n_H \sigma_H''}{n_C \sigma_C + n_H \sigma_H} \cdot \frac{1}{\cos \theta};$$

 σ'_{C} , σ'_{H} – поперечні перерізи взаємодії нейтронів на ядрах вуглецю та водню після розсіяння на ядрі вуглецю (поглинання на шляху в детектор); σ''_{C} , σ''_{H} – поперечні перерізи взаємодії нейтронів на ядрах вуглецю та водню після розсіяння на ядрі водню (поглинання на шляху в детектор).

Використовуючи вирази (17) та (18), можна визначити співвідношення $P_C^{\theta}/P_H^{\theta}$ потоків розсіяних нейтронів для складових елементів двокомпонентного розсіювача:

$$\frac{P_{C}^{\theta}}{P_{H}^{\theta}} = \frac{n_{C}\sigma_{C}\gamma_{C}(\psi_{C})(\beta_{H}-1)}{n_{H}\sigma_{H}\gamma_{H}(\psi_{H})(\beta_{C}-1)} \cdot \frac{T-T^{\beta_{C}}}{T-T^{\beta_{H}}}.$$
(19)

Для оцінки чисельного значення величини $P_C^{\theta}/P_H^{\theta}$ розглянемо один із варіантів експерименту, що був реалізований на дослідницькому реакторі ВВР-М (Київ). Первісний пучок фільтрованих нейтронів мав середню енергію 58,9 кеВ. Вимірювання проводили на куті розсіяння 20°. Використовували два розсіювача – розсіювач з поліетилену СН₂ товщиною 4,52 мм та розсіювач з вуглецю товщиною 10 мм. Концентрації ядер в розсіювачі СН₂ становили: $n_C = 0,03958 \times 10^{24}$ ядер С/см³ та $n_H = 0,07916 \cdot 10^{24}$ ядер Н/см³,

у розсіювачі вуглеці – $n_C = 0,0866 \cdot 10^{24}$ ядер С/см³.

Оскільки при малих кутах розсіяння ($\theta < 90^{\circ}$) енергія нейтронів, розсіяних на ядрах вуглецю, відрізняється від енергії налітаючих нейтронів не більше, ніж на 16 %, а перерізи взаємодії нейтронів з ядрами вуглецю та водню в області енергій 10÷100 кеВ мають плавний характер (рис. 2), то можна прийняти, що $\sigma_C \approx \sigma'_C \approx \sigma''_C$ та $\sigma_H \approx \sigma'_H$.

Рис. 2. Повні перерізи взаємодії нейтронів с ядрами вуглецю та водню в діапазоні енергій нейтронів 10 ÷ 100 кеВ.

Для оцінки візьмемо $\sigma_C = \sigma_C' = \sigma_C' = 4,6$ б; $\sigma_H = \sigma_H' = 15,6$ б; $\sigma_H'' = 17,2$ б.

Скориставшись формулою (19), отримаємо $P_{C}^{\theta}/P_{H}^{\theta} = 0.047.$

Перевірку правильності результатів розрахунків, отриманих з використанням наведених вище аналітичних виразів, було зроблено за допомогою чисельного моделювання, виконаного програмним кодом MCNP4c. При моделюванні в якості вхідного нейтронного спектра використовувався спектр фільтрованих нейтронів із середньою енергією 58,9 кеВ, отриманий за допомогою програми FILTER-7 [5]. Моделювання виконувалось з урахуванням усіх реальних параметрів геометрії експерименту, реалізованого на дослідницькому ядерному реакторі BBP-М.

Оскільки при виведенні аналітичного виразу (19) розсіяння нейтронів на повітрі не розглядалося, то для порівняльного аналізу було використано величини $P_c^{\theta} / P_H^{\theta}$ з MCNP4с розрахунків при умові відсутності повітря у просторі експерименту.

На рис. З (збільшений масштаб) представлено розрахунковий спектр розсіяних нейтронів після розсіювача CH₂ під кутом $\theta = 20^{\circ}$ та спектр розсіяних нейтронів ядрами вуглецю, які вміщує розсіювач CH₂.

Рис. 3. Розрахункові спектри розсіяних нейтронів, отримані кодом MCNP4с для розсіювача CH₂: *а* - повний вигляд спектрів; *б* - область енергій 60 ÷ 62 кеВ.

На рис. 3, *а* спостерігаються два піки нейтронів: при енергіях 51,6 та 58,1 кеВ. Пік 1 відповідає розсіянню нейтронів на ядрах водню, пік 2 – розсіянню на ядрах вуглецю. Форма піків помітно асиметрична, збоку менших значень енергій нейтронів спостерігається затягування спектра, що можна пояснити впливом ефекту багатократного розсіяння в зразку-розсіювачі та розсіянням на конструкціях захисту. Щоб не враховувати ці процеси, розглядатимемо лише праві половинки піків 1 та 2. Урахування внеску від багатократного розсіяння нейтронів на вуглеці в праву половинку площі під піком 1 було оцінено за допомогою розрахунків спектра розсіяних нейтронів ядрами вуглецю, які вміщує розсіювач CH₂ (представлено трикутниками на рис. 3). Через те, що точно визначити положення середини піків проблематично, вважали, що похибка визначення площ дорівнює добутку висоти піка I_{max} на ($E_{i+1} - E_i$), де E_i – енергетичне положення максимального значення I_{\max} .

Проведені розрахунки за кодом MCNP4с дали такий результат:

$$P_{C}^{\theta} / P_{H}^{\theta} = 0.044 \pm 0.003 \ (7 \ \%).$$

Таким чином, можна вважати, що оцінки $P_C^{\theta}/P_H^{\theta}$ за кодом MCNP4c та розрахунковими формулами в межах похибки узгоджуються між собою, однак відмінність між розрахованими значеннями при вибраному куті розсіяння 20°становить 6 %. Для інших кутів розсіяння вона може бути іншою.

Щоб з'ясувати, в яких випадках можна використовувати наближене значення $P_{C}^{\theta} / P_{H}^{\theta}$, отримане з аналітичного виразу (19), було проаналізовано, наскільки змінюватиметься значення дослі-джуваного перерізу $\langle \sigma_{\partial o c \pi} \rangle^H$ при зміні $P_C^{\theta} / P_H^{\theta}$ на ± 10 % при різних значеннях $T_{\partial ccn}^{CH_2}$ та T_{occn}^C , тобто при різному ході перерізу досліджуваного зразка в області енергій, що відповідають розсіюванню нейтронів на розсіювачі СН2 та розсіювачі вуглеці відповідно. Проведений аналіз показав, що зміна $P_{C}^{\theta} / P_{H}^{\theta}$ на ± 10 % буде призводити до зміни величини досліджуваного перерізу $\langle \sigma_{acc} \rangle^H$ більше, ніж на 1 %, лише в тому випадку, коли переріз в області енергій, що відповідають розсіянню нейтронів на вуглеці, буде перевищувати переріз в області енергій, що відповідають розсіянню нейтронів на CH₂, більше, ніж у 5 разів. Така ситуація може виникнути в тому випадку, коли в області енергій, що відповідають розсіянню нейтронів на вуглеці, присутній дуже сильний резонанс у досліджуваному перерізі.

Якщо проаналізувати хід перерізу ⁵²Сг (рис. 4), то бачимо, що в області енергій нейтронів, що відповідають розсіянню на вуглеці (58,6; 58,3 та 58 кеВ для кутів розсіяння 15, 20 та 25° відповідно) при енергії 57,7 кеВ існує *p*-резонанс. Щоб оцінити, чи можливо в такому випадку користуватися виразом (19), було проведено розрахунки $\langle \sigma_{Cr} \rangle^{CH_2}$ та $\langle \sigma_{Cr} \rangle^C$ з використанням для $\sigma_{Cr}(E)$ даних з БОЯД ENDF/B-7.1:

$$\langle \sigma_{Cr} \rangle^{CH_2} = \frac{\int\limits_{E_1}^{E_3} \sigma_{Cr}(E) \cdot F(E) dE}{\int\limits_{E_1}^{E_3} F(E) dE},$$

$$\langle \sigma_{Cr} \rangle^{C} = \frac{\int\limits_{E_{2}}^{E_{3}} \sigma_{Cr}(E) \cdot F(E) dE}{\int\limits_{E_{2}}^{E_{3}} F(E) dE},$$

де E_1 , E_3 – енергетичні межі нейтронів, розсіяних на зразку-розсіювачі CH₂ (у розрахунках вибирались рівними 42 та 59 кеВ відповідно), E_1 , E_2 – енергетичні межі нейтронів, розсіяних на водні (E_2 вибиралось рівним 55 кеВ). Спектр розсіяних нейтронів F(E) брався з MCNP4с розрахунків, обчислення усереднених перерізів проводились за допомогою програми GROUPIEPREPRO-2012 [6]. Результати цих розрахунків наведено в таблиці.

Рис. 4. Повний нейтронний переріз ⁵²Сг за даними ENDF/B-7.1 бібліотеки (суцільна крива) та спектр нейтронів, розсіяних зразком-розсіювачем CH2 під кутом θ =20°, розрахований програмою MCNP4c (пусті кружечки).

Розрахункові значення перерізів $\langle \sigma_{c_c} \rangle^{CH_2}$ та $\langle \sigma_{c_c} \rangle^C$

Кут розсіяння	Розрахункові значення		Відношення
	перерізів, б		$\langle \sigma_{c_{r}} \rangle^{c}$
	$\langle \sigma_{_{Cr}} angle^{_{CH_2}}$	$\langle \sigma_{_{Cr}} \rangle^{_{C}}$	$\frac{\langle \sigma_{Cr} \rangle^{CH_2}}{\langle \sigma_{Cr} \rangle^{CH_2}}$
15°	10,69	6,76	0,6
20°	20,87	7,17	0,3
25°	6,93	7,77	1,1
30°	1,1	8,38	7,6

Як видно з таблиці, при вимірюваннях перерізу хрому на кутах розсіяння 15, 20 та 25° для обчислення значення $P_C^{\theta} / P_H^{\theta}$ ми можемо користуватися аналітичним виразом (19), але при вимірюваннях на куті розсіяння 30° це може призвести до похибки визначення перерізу $\langle T_{s_2C_r}^{H} \rangle$ більше, ніж на 1%, тому в цьому випадку для обчислення відношення $P_C^{\theta} / P_H^{\theta}$ слід проводити більш точні розрахунки за допомогою програми MCNP4c.

Було проаналізовано також, як вплине похибка обчислення величини співвідношення $P_{C}^{\theta} / P_{H}^{\theta}$ на точність визначення T_{52}^{H} .

Якщо припустити, що перші два доданки у виразі (3) для $\Delta T^{H}_{s^2 Cr}$ близькі до нуля, то для абсолютної похибки $\Delta T^{H}_{{}^{52}Cr}$ можемо записати

$$\Delta T_{s_{2}}^{H} = (T_{s_{2}}^{CH_{2}} - T_{s_{2}}^{C}) \cdot \Delta(\frac{P_{C}^{\theta}}{P_{H}^{\theta}}).$$
(20)

Після проведення простих перетворень отримаємо вираз для відносної похибки

$$\frac{\Delta T_{s_{2}}^{H}}{T_{s_{2}}^{H}} = \frac{\Delta (P_{C}^{\theta} / P_{H}^{\theta})}{(P_{C}^{\theta} / P_{H}^{\theta})} \cdot (1 - \frac{T_{s_{2}}^{CH_{2}}}{T_{s_{2}}^{SH}}).$$
(21)

Як видно з виразу (21), відносна похибка $\frac{\Delta T^{H}_{s_{2}}}{T^{H}_{s_{2}}}$ залежить від точності визначення співвідношення $P_C^{\theta} / P_H^{\theta}$ та від відношення прохо- $T_{S_{2}C_{r}}^{CH_{2}}$ та $T_{S_{2}C_{r}}^{H}$. Якщо відношення джень $T_{s_{2}C_{r}}^{CH_{2}}/T_{s_{2}C_{r}}^{H}=0,99$, то 10 %-на похибка у визначенні співвідношення потоків призводить до $\frac{\Delta T^{H}_{5^{2}Cr}}{T^{H}_{5^{2}Cr}} 0,1\%;$ похибки визначення при

 $T_{S^2_{Cr}}^{CH_2} / T_{S^2_{Cr}}^{H} = 0,1$ похибка $\frac{\Delta T_{S^2_{Cr}}^{H}}{T_{S^2_{Cr}}^{H}}$ може досягати

- 1. GritzayO.O., Grymalo A.K., Kolotyi V.V. et al. Research of Isolated Resonances Using the Average Energy Shift Method for Filtered Neutron Beam // Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 3-rd Int. Conf. (Kyiv, Ukraine, June 7 -12, 2010). - Kyiv, 2011. - P. 483.
- 2. Gritzay O.O., Grymalo A.K., Kolotyi V.V. et al. Determination of Total Neutron Cross Section of Cr-52 With Using Average Energy Shift Method for Filtered Neutron Beam // Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 4-th Int. Conf. (Kyiv, Ukraine, Sept. 3-7, 2012). - Kviv, 2013. - P. 430.

10 %. Ситуація з $T^{H}_{{}^{52}Cr} >> T^{CH_2}_{{}^{52}Cr}$ може виникнути в тому випадку, коли в області енергій, що відповідають розсіянню нейтронів на вуглеці, у досліджуваному перерізі буде присутній дуже сильний резонанс. Очевидно, що в такому випадку слід проводити довготривалі розрахунки співвідношення $P_{C}^{\theta} / P_{H}^{\theta}$ за допомогою програми MCNP4c, щоб досягти якомога меншої похибки $\Delta(P_C^{\theta} / P_H^{\theta}).$

Висновки

Аналітичні вирази для розрахунку відношення потоків розсіяних нейтронів під кутом в ід складових елементів вуглецю і водню двокомпонентного розсіювача $\operatorname{CH}_2 P_C^\theta / P_H^\theta$, отримані в даній роботі, можуть використовуватись у тому випадку, коли досліджуваний переріз в області енергій, що відповідають розсіянню нейтронів на вуглеці, не буде перевищувати переріз в області енергій, що відповідають розсіянню нейтронів на СН₂, більше, ніж у 5 разів.

При дослідженнях повних нейтронних перерізів ⁵²Сгв області енергій 44 ÷ 55 кеВ користуватися отриманим аналітичним виразом для обчислення $P_{C}^{\theta} / P_{H}^{\theta}$ можна при вимірюваннях перерізу хрому на кутах розсіяння 15, 20 та 25°, при вимірюваннях на куті розсіяння 30° слід проводити більш точні розрахунки за допомогою програми MCNP4c.

СПИСОК ЛІТЕРАТУРИ

- 3. Краткий справочник инженера-физика. Ядерная физика, атомная физика. - М.: Госатомиздат, 1961. - 508 c.
- 4. Пшеничний В.А. Особливості обробки результатів вимірів кутових розподілів розсіяння на фільтрованих пучках // Ядерні та радіаційні технології. -2006. -T. 6, № 3- 4.- C. 5 - 20.
- 5. Gritzay O.O., Vakulenko M.M. Development of the code for filter calculation // Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 4-th Int. Conf. (Kyiv, Ukraine, Sept. 3-7, 2012). - Kyiv, 2013. - P. 426 - 429.
- 6. https://www-nds.iaea.org/public/endf/prepro/

О. О. Грицай¹, А. К. Гримало¹, В. А. Пшеничный²

¹ Институт ядерных исследований НАН Украины, Киев ² Государственный научно-инженерный центр систем контроля и аварийного реагирования, Киев

АНАЛИТИЧЕСКИЕ ВЫРАЖЕНИЯ ДЛЯ РАСЧЕТОВ ВЫХОДОВ РАССЕЯННЫХ НЕЙТРОНОВ ИЗ ОБРАЗЦА-РАССЕИВАТЕЛЯ ПОД МАЛЫМИ УГЛАМИ

Получены аналитические выражения для расчетов выходов рассеянных нейтронов из двухкомпонентного образца-рассеивателя CH₂ под углами 15, 20, 25 и 30°. Проведен анализ границ использования полученных выражений в зависимости от структуры исследуемых нейтронных сечений.

Ключевые слова: двухкомпонентный образец-рассеиватель, рассеянные нейтроны, метод пропускания, программный код MCNP4c.

O. O. Gritzay¹, A. K. Grymalo¹, V. A. Pshenychnyi²

¹Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv ²State Science and Engineering Center of monitoring systems and emergency response, Kyiv

ANALYTICAL EXPRESSIONS FOR CALCULATIONS OF SCATTERED NEUTRONS FROM THE SAMPLE (SCATTERER) AT SMALL ANGLES

Analytical expressions for calculation of yield of scattered neutrons from the two-component sample CH_2 at the angles of 15, 20, 25 and 30° were received. The analysis of the range of validity of the obtained expressions depending on the structure of investigated cross sections was carried out.

Keywords: two-component sample (scatterer), scattered neutrons, transmission method, code MCNP4c.

REFERENCES

- Gritzay O.O., Grymalo A.K., Kolotyi V.V. et al. Research of Isolated Resonances Using the Average Energy Shift Method for Filtered Neutron Beam // Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 3-rd Int. Conf. (Kyiv, Ukraine, June 7 - 12, 2010). - Kyiv, 2011. - P. 483.
- Gritzay O.O., Grymalo A.K., Kolotyi V.V. et al. Determination of Total Neutron Cross Section of Cr-52 With Using Average Energy Shift Method for Filtered Neutron Beam // Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 4-th Int. Conf. (Kyiv, Ukraine, Sept. 3-7, 2012). - Kyiv, 2013. - P. 430.
- Short Guide of engineer-physicist. Nuclear physics, atomic physics. - Moskva: Gosatomizdat, 1961. -508p. (Rus)
- 4. Pshenichnij V.A. // Yaderni ta radiatsiini tekhnologiyi.
 2006. Vol. 6, No. 3 4. P. 5 20. (Ukr)
- Gritzay O.O., Vakulenko M.M. Development of the code for filter calculation// Current Problems in Nuclear Physics and Atomic Energy: Proc. of the 4-th Int. Conf. (Kyiv, Ukraine, Sept. 3-7, 2012). - Kyiv, 2013. - P. 426-429.
- 6. https://www-nds.iaea.org/public/endf/prepro/

Надійшла 22.04.2015 Received 22.04.2015