![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering
L. A. Bulavin1,2, O. V. Tomchuk1,3,*, M. V. Avdeev3Abstract: The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3 - 1.8) % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter.
Keywords: detonation nanodiamonds, small-angle neutron scattering, fractal clusters, aggregation number.1. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27 (2002) 227. http://dx.doi.org/10.1080/10408430208500497
2. E. Osawa. Monodisperse single nanodiamond particulates. Pure Appl. Chem. 80 (2008) 1365. http://doi.org/10.1351/pac200880071365
3. V.Yu. Dolmatov. Ultradisperse diamonds of detonation synthesis: properties and applications. Uspekhi Khimii 70(7) (2001) 687. (Rus) Article
4. A. Kruger, M. Ozawa, G. Jarre et al. Deagglomeration and functionalisation of detonation diamond. Phys. Status Solidi A 204 (2007) 2881. http://doi.org/10.1002/pssa.200776330
5. J.I. Chao, E. Perevedentseva, P.H. Chung et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93 (2007) 2199. https://doi.org/10.1529/biophysj.107.108134
6. A. Kruger, F. Kataoka, M. Ozawa et al. Unusually tight aggregation in detonation diamond: identification and disintegration. Carbon 43 (2005) 1722. https://doi.org/10.1016/j.carbon.2005.02.020
7. M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov et al. Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering. J. Phys. Chem. C 113 (2009) 9473. https://doi.org/10.1021/jp900424p
8. L.A. Feigin, D.I. Svergun. Structure Analysis by Small-Angle X-Ray and Neutron Scattering (New York: Plenum Press, 1987) 335 p. https://doi.org/10.1007/978-1-4757-6624-0
9. O.V. Tomchuk, M.V. Avdeev, L.A. Bulavin et al. Small-angle neutron scattering by fractal clusters in aqueous dispersions of nanodiamonds. Physics of Particles and Nuclei Lett. 8(10) (2011) 1046. https://doi.org/10.1134/S1547477111100177
10. M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk et al. The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. J. Phys.: Condens. Matter 25 (2013) 445001 (7 p). https://doi.org/10.1088/0953-8984/25/44/445001
11. O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov et al. Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Cryst. 47 (2014) 642. https://doi.org/10.1107/S1600576714001216
12. O.V. Tomchuk, D.S. Volkov, L.A. Bulavin et al. Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering. J. Phys. Chem. C 119 (2015) 794. https://doi.org/10.1021/jp510151b
13. O.V. Tomchuk, M.V. Avdeev, V.L. Aksenov et al. Comparative structural characterization of the water dispersions of detonation nanodiamonds by small-angle neutron scattering. J. Surf. Inv. X-ray, Synchr. Neutr. Techn. 6(5) (2012) 821. https://doi.org/10.1134/S1027451012100151
14. A.V. Nagornyj, L.A. Bulavin, V.I. Petrenko et al. Determination of the structure factor of interparticle interactions in the ferrofluid by small-angle neutron scattering. Nucl. Phys. At. Energy 15(1) (2014) 59. (Ukr) https://jnpae.kinr.kyiv.ua/15.1/Articles_PDF/jnpae-2014-15-0059-Nagornyi.pdf
15. A.E. Aleksenskiy, E.D. Eydelman, A.Y. Vul’. Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3 (2011) 68. https://doi.org/10.1166/nnl.2011.1122
16. J. Zhao, W. Meerwinck, T. Niinkoski et al. The polarized target station at GKSS. Nucl. Instrum. Methods Phys. Res. A 356 (1995) 133. https://doi.org/10.1016/0168-9002(94)01462-0
17. Y.M. Ostanevich. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. Makromol. Chem. Macromol. Symp. 15 (1988) 91. https://doi.org/10.1002/masy.19880150107
18. A.I. Kuklin, A.Kh. Islamov, Yu.S. Kovalev et al. Optimization of the two-detector system of the YuMO small-angle neutron spectrometer for investigation of nanoobjects. Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya 6 (2006) 73. (Rus)
19. P.W. Schmidt. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Cryst. 24 (1991) 414. https://doi.org/10.1107/S0021889891003400
20. G. Beaucage. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Cryst. 29 (1996) 134. https://doi.org/10.1107/S0021889895011605
21. G. Beaucage, H.K. Kammler, S.E. Pratsinis. Particle size distributions from small-angle scattering using global scattering functions. J. Appl. Cryst. 37 (2004) 523. https://doi.org/10.1107/S0021889804008969