![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Charge dependence of the pion-nucleon coupling constant
V. A. Babenko*, N. M. PetrovAbstract: On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7) by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7). Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13) is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26) obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.
Keywords: nuclear forces, π-mesons, pp- and np-scattering, pion-nucleon constant.1. L. Hulthen, M. Sugawara. The Two-Nucleon Problem. In: Encyclopedia of Physics, Vol. 39: Structure of Atomic Nuclei, Ed. by S. Flugge (Berlin-Gettingen-Heidelberg: Springer-Verlag, 1957) 1. Google Books
2. A. Bohr, B.R. Mottelson. Nuclear Structure, Vol. 1 (New York: Benjamin, 1969), 471 p. Google Books
3. T. Ericson, W. Weise. Pions and Nuclei (Oxford: Clarendon Press, 1988), 479 p. Google Books
4. R. Koch, E. Pietarinen. Low-Energy πN Partial Wave Analysis. Nucl. Phys. A 336(3) (1980) 331. https://doi.org/10.1016/0375-9474(80)90214-6
5. P. Kroll. Phenomenological Analyses of Nucleon-Nucleon Scattering. Physics Data. Vol. 22-1, Ed. by H. Behrens and G. Ebel (Karlsruhe: Fachinformationszentrum, 1981) 274 p. INIS
6. J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp et al. Phase Shift Analysis of All Proton-Proton Scattering Data Below Tlab = 350 MeV. Phys. Rev. C 41(4) (1990) 1435. https://doi.org/10.1103/PhysRevC.41.1435
7. V. Stoks, R. Timmermans, J.J. de Swart. Pion-Nucleon Coupling Constant. Phys. Rev. C 47(2) (1993) 512. https://doi.org/10.1103/PhysRevC.47.512
8. J.J. de Swart, M.C.M. Rentmeester, R.G.E. Timmermans. The Status of the Pion-Nucleon Coupling Constant. arXiv:nucl-th/9802084 (1998), 19 p. https://arxiv.org/abs/nucl-th/9802084
9. R. Machleidt, I. Slaus. The Nucleon-Nucleon Interaction. J. Phys. G 27(5) (2001) R6. https://doi.org/10.1088/0954-3899/27/5/201
10. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky et al. Dispersion Relation Constrained Partial Wave Analysis of πN Elastic and πN → ηN Scattering Data: The Baryon Spectrum. Phys. Rev. C 69(3) (2004) 035213. https://doi.org/10.1103/PhysRevC.69.035213
11. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman. Extended Partial-Wave Analysis of πN Scattering Data. Phys. Rev. C 74(4) (2006) 045205. https://doi.org/10.1103/PhysRevC.74.045205
12. D.V. Bugg. The Pion Nucleon Coupling Constant. Eur. Phys. J. C 33(4) (2004) 505. https://doi.org/10.1140/epjc/s2004-01666-y
13. V. Baru, C. Hanhart, M. Hoferichter et al. Precision Calculation of Threshold πd- Scattering, πN Scattering Lengths, and the GMO Sum Rule. Nucl. Phys. A 872(1) (2011) 69. https://doi.org/10.1016/j.nuclphysa.2011.09.015
14. J. Rahm, J. Blomgren, H. Conde et al. np Scattering Measurements at 162 MeV and the πNN Coupling Constant. Phys. Rev. C 57(3) (1998) 1077. https://doi.org/10.1103/PhysRevC.57.1077
15. L.A. Sliv. Charge Independence and Charge Symmetry of Nuclear Forces. Izv. Akad. Nauk SSSR, Ser. Fiz. 38(1) (1974) 2. (Rus)
16. T.E.O. Ericson, M. Rosa-Clot. The Deuteron Asymptotic D-state as a Probe of the Nucleon-Nucleon Force. Nucl. Phys. A 405(3) (1983) 497. https://doi.org/10.1016/0375-9474(83)90516-X
17. G.A. Miller, B.M.K. Nefkens, I. Slaus. Charge Symmetry, Quarks and Mesons. Phys. Rept. 194(1-2) (1990) 1. https://doi.org/10.1016/0370-1573(90)90102-8
18. J. Beringer, J.-F. Arguin, R.M. Barnett et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 86(1) (2012) 010001. https://doi.org/10.1103/PhysRevD.86.010001
19. V.V. Babikov. Variable Phase Approach in Quantum Mechanics (Moskva: Nauka, 1976) 288 p. (Rus)
20. A.G. Sitenko, V.K. Tartakovskii, Lectures on the Theory of the Nucleus (Oxford, New York: Pergamon Press, 1975), 304 p. Google Books
21. W.O. Lock, D.F. Measday. Intermediate Energy Nuclear Physics (London: Methuen, 1970), 320 p. Google Books
22. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering on the Basis of Modern Experimental Data from Partial-Wave Analyses. Physics of Atomic Nuclei 70(4) (2007) 669. https://doi.org/10.1134/S1063778807040072
23. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering in the the Shape-Parameter Approximation from Present-Day Experimental Data. Physics of Atomic Nuclei 73(9) (2010) 1499. https://doi.org/10.1134/S1063778810090048
24. J. Rahm, J. Blomgren, H. Conde et al. np Scattering Measurements at 96 MeV. Phys. Rev. C 63(4) (2001) 044001. https://doi.org/10.1103/PhysRevC.63.044001
25. D.V. Bugg, A.A. Carter, J.R. Carter. New Values of Pion-Nucleon Scattering Lengths and f2. Phys. Lett. B 44(3) (1973) 278. https://doi.org/10.1016/0370-2693(73)90225-6
26. J. Haidenbauer. The Nucleon-Nucleon Interaction. Braz. J. Phys. 34(3A) (2004) 846. http://dx.doi.org/10.1590/S0103-97332004000500036
27. M. Naghdi. Nucleon-Nucleon Interaction: A Typical/Concise Review. Phys. Part. Nucl. 45(5) (2014) 924. https://doi.org/10.1134/S1063779614050050
28. V.A. Babenko, N.M. Petrov. Description of Scattering and of a Bound State in the Two-Nucleon System on the Basis of the Bargmann Representation of the S Matrix. Physics of Atomic Nuclei 68(2) (2005) 219. https://doi.org/10.1134/1.1866377
29. R.W. Hackenburg. Neutron-Proton Effective Range Parameters and Zero-Energy Shape Dependence. Phys. Rev. C 73(4) (2006) 044002. https://doi.org/10.1103/PhysRevC.73.044002