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TRANSMISSION OF GAMMA-QUANTA THROUGH VIBRATING TARGET

The transmission of the Mdossbauer y-quanta through a vibrating absorber is analyzed in the framework of the
quantum theory. For this aim the photons are described by the Bialynicki - Birula’s wave function. We calculated time
dependence of the wave packets, which describe the transmitted y-photons. It is shown that the squared modulus of their
wave function determines the detection rate of y-photons in full analogy with particles having a mass. The effect of
anomalous transmission of Mdssbauer radiation, caused by high-frequency periodic swings of the absorber, and the

corresponding suppression of reactions is studied.
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Introduction

Interaction of the Maossbauer radiation with
crystals subject to any alternating fields has been
studied in numerous papers (see, for example,
reviews [1, 2]), although there were discussed
mainly kinematic effects. In other words, most
papers took into account only single collisions of
incident photons with atoms of a target. Such a
kinematical approach is applicable only for thin
crystals. The problem of multiple scattering of the
Maéssbauer rays inside the vibrating targets, having
arbitrary thickness, has been addresssed in papers
[3-7]. Unfortunately, these dynamical scattering
theories are not completely consistent. In particular,
in [3-5] the Mdossbauer photons were treated as
classical electromagnetic waves, goverened by the
Maxwell equations. The quantum multiple scattering
equations have been solved in [6, 7], but without
introduction of the photon wave function.

Recently new features of Mossbauer forward-
scattering spectra in vibrating crystals were analyzed
in [8 - 10]. One of the most interesting results was
obtained by Vagizov et al. [10]. They investigated
the transmission of single y-photon through
vibrating absorber, having fixed the initial moment
for decay of the excited 14.4 keV level of the nuclei
*"Fe in the source of y-quanta and by using the time-
delay scheme. The measured detection rate revealed
sharp deviation from simple exponential decay law,
that was associated with a distortion of the
transmitted photon shape. The authors indicated that
modulation of the photon shape can be used for the
writing down an information, important for the
guantum cryptography and communication. The
experiment [10] has been accompanied by the quasi-
classical calculations. The photon was described by
a classical electromagnetic wave E(z,t), while the

nuclei were treated as a quantum system. Large
number of correlated photons of the laser pulse
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really can be described by the classical wave, but
single photon is a quantum object, for which such
notions as strengths of the electric field E(z,t) or
the magnetic field B(z,t) have no clear physical
sence. The calculations in [10] have been done by
methods of the classical optics. In particular, the
electromagnetic wave was assumed to generate E1
transitions in nuclei °’Fe, although their excited
14.4 keV level 3/2" and the ground one 1/2" are
coupled by M1 transitions.

Of course, it would be much better to describe
the photon with the help of the wave function. Such
photon wave function has been derived by
Bialynicki - Birula [11] and Sipe [12]. Its squared
modulus defines the probability density to detect the
photon energy #® inside some space interval at the
moment t. This differs the photon wave function
F(r,t) from the wave function ¥(r,t) of particles
with mass, which determines the probability to find
just the particle in any interval.

We develop here strict quantum-mechanical
description of single y-photon transmission through
vibrating absorber. The photon is described by the
wave function, proposed in [11, 12]. This wave
function allows to describe the photon almost in the
same manner as it is done for massive particles. The
present paper seems to be the first application of
such wave function in the y-optics. Moreover,
special attention is paid to the effect of anomalous
transmission of the Maossbauer radiation through
absorbers oscillating with high frequency, first
predicted in [7] and observed in [5]. While only
harmonic oscillations of the absorber were taken into
account in the theory [10], we regard arbitrary
periodic motion of the absorber as a whole. Such
approach may be useful in studies of vibrations with
large amplitude, when the role of anharmonicity of
vibrations becomes significant.
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Scattering amplitude

Let the absorber occupy the region 0<z<D,
where D is the thickness of the slab. We assume
that y-quanta are incident perpendicularly to the
surface along the axis z, and all the nuclei of the
absorber vibrate in unison also along the axis z. We
consider general case of arbitrary periodic
oscillations of the absorber, when the corresponding
displacements of all the nuclei from their
equilibrium positions are defined by a periodic
function X(t+t,) = X(t+t,+T) with the period
T =2n/Q, circular frequency Q, and the moment
t,, related to the initial phase of oscillations ¢, by

¢, = Qt,. The nuclear sublevels are assumed to be

not split and trerefore the polarizations of photons
are not mixed during passage through the target

The Raman scattering of y-quanta in vibrating
crystal leads to an appearance of waves with the
frequencies o, =k.c=w—-nQ, where n is an
integer. In thick targets a rescattering of photons
between the states k., A and k,, A should be taken

into account. The corresponding coherent Raman
scattering amplitude of y-quanta by the nucleus to
zero angle is given by [6, 7]

£ (0) =

“p 21, +1 0 Z a a8
21, 4k e h(w— o) —mQ) +il /2’

)

where p is the relative concentration of the
Maossbauer isotope, 1, and I are the nuclear spins

in the excited and ground states, e is the
Debye - Waller factor (2W =< (ku)® >, where u is

the disolacement of the atom from its equilibrium
position due to thermal vibrations, the brackets mean
the averaging over phonons), I' and I, are

respectively the total and radiative widths of the
resonant nuclear level with the energy ey .

The coefficients a, are determined by

e
—2W (k)

Lt o ik
a, —?J:mdte e ", 2

They are nothing but the Fourier-expansion
coefficients for the exponent e**® | i.e.,

eikX (t) - ianeinﬂt. (3)
n=—o0

By definition, the integral (2) for the coefficient

a, denotes the following integral sum:

. 1 inat
a, = |Im?
At—0 p=0

kX (t,)

P AL, (4)

Pe

where At=T /N and t, = pAt. It may be rewritten
as

ikX (t
a,= lim s Se e )

N—ow p=0

Then one can write down

Z an an+m -

n=-—owo

“m ZS (p, p)exp{ik[X (t,) - X(t, e 2rmem),

*p,p'=0
(6)
where we introduced the following notation:
N/2-1
Su(p, p’)- 2 e, )
n——N/2
The summation gives
, 1 CNCo 1_e2ﬂi(P*P')
Su(p.p)=ge " e ©
It is easily seen that for p = p’
Sy(p,p)—0 as N — o0, 9)
For p=p’ from the definition (7) one gets
limSy (p. p) =1. (10)
Combining (9) and (10) one writes
I!liLnSN(p’ p') = Spp" (11)

where §,,, is the Kronecker symbol. Substitution of
this expression into (6) gives

||m zeanmp/N

~>oop 0

(12)

Z ana:+m
n=-oo

Performing the summation over p we arrive finally
at

S a8, =6 (13)

The relation (13) can be called an addition
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theorem for the expansion coefficients a, in close
analogy with the theorem for Bessel functions [13].

The photon wave function

The photon wave function has two vector
components with helicities A =+1 [11, 12]:
eikr—im’(

F (rt)= J.dk\/%ex(k) f, (k) 20’

(14)
where e, (k) are the polarization vectors, the

frequency m=kc and the weight function f, (k),
normalized as

zjdk| f, (k) P=1. (15)

A=£1

The modulus squared of the photon wave
functionF, (r, t) determines a density of the

photon's mean energy at a given position and time
[11, 12].

Since the energy distribution of the Mossbauer
radiation is very narrow, we can write down the
initial wave packet, which describes the incident
photon, as

F" (zt) = e, \ho i (2, 1), (16)
where
\Pin(z' t) = J‘md(‘ogin ((J‘))e_iwtr ' (17)
t. =t—2z/c represents the retarded time
1 r 1/2 1
. = | = . 18
9 () 2ni£hj o—orirron Y

Here I, and hw, are respectively the width and

energy of the excited level of the emitting nucleus.
In Eq. (16) we took into account that o~ m, since

the width I'; <<hw,. Factorization of the photon
wave function (16) allows us to interpret the
function |, (z,t)[ as the probability density of

finding the photon in vicinity of the plane z =const
at the moment t. For brevity, from now on we use

the photon wave function in units of

The wave packet (16) reaches the target at the
moment t=0. In experiments [10] this initial
moment was fixed by detection of the 122 keV
photon, leading to the population of the 14.4 keV
level in °'Fe. In addition, the initial phase of
vibrations ¢, =Qt, was also fixed with respect to

the starting moment t=0.

hw,e, .
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Substitution of Eq. (12) into Eq. (10) yields

—ioaot 2h
Y, (z,t) = (T, [ h)"%e r 0(t), (19)

where

{1, t >0,
o(t,) = (20)

0, t <0

is the Heaviside step function. The function (19) is
normalized as

[Cdt, 1w, (2, 0F=1, (21)

that corresponds to one photon incident on the unit
square of the target.

The complete wave function, which describes the
photon passing through the target, is

¥(z,1) = [ dog, (@)v,(z 1), (22)
where the function w,(z,t) satisfies the multiple

scattering equations, given in [14], when the incident
photons are described by the plane waves
exp(ikz —iwt) .

The solutions w, (z, t) differ by the index j, so

that the complete wave function is represented by a
sum

vz )= Sz

j=

(23)

with the partial waves w'”(z,t) having the
components with different frequencies:

vO@y=Scme M e

n=—o

where the wave vectors K;={0,0,k+A;(w)},
and A, (w) denotes the difference of the wave vectors

in the medium and vacuum. Note that inside the target
one can approximate all the vectors k, by k .

Multiple scattering equations for the wave
function w, (z,t) far from the Bragg condition can

be reduced to a set of algebraic equations

i/\ij (n) = A;(@)C;(n"), (25)

where the matrix

A\’n = (an/k)l: fcohR(O)Snn’ + fc(c;]"n)N (O) :'1 (26)
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p is a density of atoms in the absorber, f_,.(0) is
the coherent Rayleigh forward-scattering amplitude
of y-quanta by electrons of the atom in the absence
of the forced vibrations. Its real part reads

RefcohR (0) = _rOZ

where r, =e*/mc? is the classical electron radius,
e and m are charge and mass of the electron, Z is
the number of atomic electrons. The amplitudes
obey the following boundary condition at the face
surface (z =0) of the target [7]:

(@7)

Zc (n)=35,

j=—0

(28)

By substituting (1) into Egs. (25), (26) and using
the addition theorem (19) one finds the eigenvalues
of the matrix A (see also [7]),

Aj(oo) =A, +A (00— JO), (29)
where the term associated with the electrons
Ae = (an/ k) fcohR(O) (30)
and the nuclear part
|2l +1) _ r./2
Ay(©) = —pp—| S e .
k{21, +1 ho—owp)+1I'/2
(31)|
¥ (r,t
|, (r.t) = 2n

where vy,
coefficient associated with the electrons, t=t, /1

is the dimensionless time measured in units of the
nuclear lifetime t, =2/T,

W (k)
o

B=o.e (36)

is the dimensionless thickness parameter, depending
on the resonance value of the absorption cross

section
2| 21,+1 T,
GO e
k 21,+1) T

and the number of the resonant nuclei per unit
absorber’s surface n, = ppD.

In standard experiments the initial moment of
decay t=0 is not fixed. The corresponding flux of
photons behind the absorber 3, is obtained by
averaging (35) over time and phase:

@37)

= X=X + 1y,

The corresponding eigenvectors, which satisfy the
constraint (28), are

— a0 A Qi
C,(n)=a;a; e, (32)

where a; determines the amplitude of the jth wave

and a’j’_nei”d’0 the fraction of the Raman component

with the frequency o, . Thus, such a wave ! (z, t)
inside the target (0 <z < D) may be written as

\Vﬁj)(z, t)= ajeiAj(m)Z_lﬁ)jtre—ikX (t+t0)eij¢0’

(33)
where we took into account the expansion (17). The
transmitted wave y'”(z,t), behind the vibrating
target (z > D) is described by the same formula (33)

z
but with the factor e (@)D instead of €’ ()

It is convenient to replace the energies by the
dimensionless parameters

_ 2h(w—ax) _ 2h(w, — o — j€)
r ' r '

(34)

The modulus squared of the wave function (22) is
calculated with the aid of (33), yielding

) 2
_IBlzjeijcbo

dxe—lxrlz (
exp -
X+1

: (35)

=I',/T,and p, =2ImA, is the absorption |

~ 2 Ys _ B
LT By KT ool e )
(38)
where 3 is the flux of incident photons.

Suppression of inelastic channels and reactions

Let us consider now the case of high-frequency
vibrations, when

B/2Qr, <<1. (39

Moreover, we suppose that the incident radiation is
tuned closely to the transition in the absorber,
o, ~wy. In this case the forward-scattering

spectrum consists of well resolved sidebands
separated by Q. Now A (0o— jQ) =0 if j=0 and,
as a result, the function v, (z, t) takes the form

W (2, 1) = eiAEDe—iwtr [1+ a, (eiAN(w)D _1) o X (t+t0)j|.

(40)
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The photon wave function is obtained by using
Egs. (18) and (40) in (22). The resulting integral
over o can be evaluated with the help of the
procedure proposed in [15]. Then in the simplest
case of o, =, and y, =1 one has

¥, (z,t)= {1+ aoe’ikx(”to) [JO (\/Bzr) —l}}x

D 1
X e \/a

The corresponding probability density, averaged
over the phase ¢, , will be

W, (2OF ={(1- |2, )+]a, F 92 (B )}

—imotr —T/ 2

e

a(t,). (41)

X efueD

L exp(=0)0(x).

N

(42)

Note that here the term (1-|a, [*) is a sum of the
amplitudes moduli squared for all the waves
v (z,t) except for one with j=0. So from the
derived formulas one sees that the attenuation of all
the waves with j=0 is only caused by the
interaction with electrons (photoeffect, etc.), while
the wave y(z,t) is absorbed by the vibrating in
unison nuclei in the same manner as in the case of a
motionless target. Such an anomalous absorption is
ensured by a coherent mixing of the waves with

different frequencies, which form the wave
y(z,t). By using the addition theorem (21) for
the Fourier coefficients a. we find that the

n

absorption amplitude M of such jth partial wave
by the vibrating nucleus is

M~ >a a;, =5, (43)

n=—ow

It is interesting that although every individual
wave with frequency o, interacts with the nuclei,
their coherent sum "% (z,t) does not. In the case
of the simple sinusoidal vibrations, when the forced
dispacements of atoms are described by the function
X (t) = Ajsin(t + ) the coefficients
a,=J,(kA)), one can achieve the complete
suppression of inelastic channels and reactions when
modulation index kA, is a root of the equation
Jo(kA) =0,

Of course, the most direct way to observe such a

phenomenon would be a measurement of the yield
of conversion electrons ejected from the vibrating
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slab, whose nuclei are excited by the Maossbauer
radiation. The corresponding reaction cross section
at the nucleus with coordinates r is easily obtained
by making use of the expression (43):

o, (r)=la, [ o (r), (44)
where ¢ (r) denotes the reaction cross section in
the point r of the target at rest. From Eqgs. (36), (37)
it is clearly seen that only the partial wave y(r, t)
takes part in the reaction, while the contribution of
all the others with j =0 is negligible at frequencies

Q>>p/21,.
Conclusion

The photon wave function W(z,t) in our
formulas plays the same role as the electric field
strength of the classical wave E(z,t), used in the
calculations [10]. Our Eq. (28) for | ¥, (z,t) [ in the
case of harmonic vibrations agree with Eq. (11),
derived in Ref. [10] for |E(z,t)[. Therefore the

present theory can be regarded as a foundation of the
semi-classical approach [10].

Numerical calculations of the transmitted flux
|E(z,t) [, performed in Ref.[10], well reproduce the
experimental data. Hence, there is no need to repeat
numerical calculations for the time-dependent
function | W, (r,t) [ in order to get the same result.

Since |, (z,t)[ well describes the experimental
value of the count rate of y photons measured in
[10], one can really interpret |, (z,t) " At as the
probability of detecting the y photon in the time

gate from t to t+ At. For narrow wave packets such
a statement is equivalent to the statement that the

correspondent function |F(z,t)* At means the

probability density of detecting the energy % in the
same time interval. Thus, one can treat the
experiment [10] as the proof that the function
F(r,t)is really the photon wave function. This

reveals tight binding of massless photons and
particles having the mass.

The anomalous transmission of Mdssbauer
radiation through vibrating crystal, observed in [5],
has been explained there partly by the coherent
enhancement of the radiative channel and partly by
the anomalously weak resonance absorption. But
according to Eq. (42) the anomalously transmitting
part of the Mosshauer radiation (1-|a, ') is only

ensured by a weak absorption of the partial y-waves
V.o~ The remaining partial wave with j =0, which
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enters the y-wave packet, has the same time
dependence as the wave function of photon
transmitted through a motionless absorber. This
means that there is no decay acceleration. Thus, the
high-frequency vibrations provide the reaction
suppression, but not the radiative enhancement.

It is worth to add also that our calculations can be
useful in studies of deviations of forced vibrations
from the sinusoidal law caused by anharmonicity or
any other reasons.

I am indebted to Dr. A. G. Magner for helpful
discussion of the results.
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0. 51. [I3rob6auk
Inemumym sdepuux docnioxceny HAH Yxpainu, Kuis
MMPOXOIKEHHSI TAMMA-KBAHTIB KPI3b BIBPYIOUHMI ITOTJIMHAY

VY pamkax KBaHTOBOI TeOpil aHATI3YEThCS MPOXOIKEHHS MeccOayepiBChbKUX Y-KBAHTIB Kpi3b BIOPYIOYMH MOTJIMHAMY.
3 i€ MeTor (OTOHH OMHCYIOTHCS XBHJIbOBOIO (yHKieto bsutininki - Bipyau. Mu po3paxyBaii 4acoBy 3aJIeXkHICTh
XBHJIbOBHX ITaKETiB, SIKI OMMCYIOTH Y-POTOHHM, 1m0 npoinum. [TokazaHo, mo kBagpaT MOy i€l XBUILOBOT (yHKIIT
BH3HAYa€ MIBHUIKICTH JETEKTYBaHHS Y-(OTOHIB y MOBHIH BiAMOBIJHOCTI 3 YaCTMHKaMH, SIKi MalOTh Macy. BuBuaerbcs
e(eKT aHOMAILHOTO MPOXOKEHHS MeccOayepiBCbKOTO0 BUITPOMIHEHHS, BUKIMKaHIH BHCOKOYACTOTHUMH IEPiOIUIHH-
MU KOJTMBaHHAMH TIOTJIMHAYA, T BiIMOBIIHE ITONABICHHS peaKIliil.

Kniouosi cnosa: ebpexr Meccbayepa, ramma-KBaHT, BiOpaiii, XBuwiboBa (yHKIis (QOTOHA, TUHAMIUHA Teopis
PO3CIsIHHS, aHOMAJTbHE TIPOXO/IKEHHS.

A. 5. [I3100.1uK

Hucmumym soepnvix uccnedosanuii HAH Yxpaunvl, Kues

MPOXOXKJIEHUE TAMMA-KBAHTOB CKBO3b BUEPUPYIOIIU IMTOTJIOTUTEJIb

B pamkax KBaHTOBOH TEOpHH aHAIM3HPYETCS MPOXOXKICHHE MeccOAyIPOBCKHX Y-KBAaHTOB CKBO3b BHOPHPYIOMINI
morotutenb. C 3TOH 1enpio (OTOHBI OMUCHIBAIOTCS BONHOBOW (yHKImed bsmmaunkwm - bupynsl. Ml paccunrann
BPEMEHHYIO 3aBHCHMOCTH BOJIHOBOTO IIaKETa, KOTOPBIM OMKCHIBAaeT mpomienune y-¢oronsl. IlokazaHo, 4To KBaapar
MOZYJSL 3TOW BOJIHOBOM (DYHKIMH OIpeAeNsieT CKOPOCTh NETEKTUPOBAHUS Y-(OTOHOB B IIOJHOM COOTBETCTBHH C
YacTHLAMU, HUMEIOUIMMHU Maccy. M3ydaercs 3¢d¢dexT aHOMaJbHOrO NPOXOKICHUS MeccOaydIpPOBCKOIO H3ITyUEHHS,
BBI3BAaHHBIM BBICOKOYACTOTHBIMU MNEPUOANICCKUMU KoJIEOaHUSIMU MOIJIOTUTEIISL, U COOTBETCTBYIOIICC IIOAABJICHUC
peaKLuid.

Kniouesvie cnosa: >pdpext Meccbayspa, ramma-KBaHT, BHOpanuu, BONHOBas (GyHKIWsS (GoToHA, THHAMHYECKas
TEOpHs paccesiHNs, aHOMAIIbHOE MPOXOXKICHHUE.
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