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TRANSMISSION OF GAMMA-QUANTA THROUGH VIBRATING TARGET 
 

The transmission of the Mössbauer γ-quanta through a vibrating absorber is analyzed in the framework of the 

quantum theory. For this aim the photons are described by the Bialynicki - Birula’s wave function. We calculated time 

dependence of the wave packets, which describe the transmitted γ-photons. It is shown that the squared modulus of their 

wave function determines the detection rate of γ-photons in full analogy with particles having a mass. The effect of 

anomalous transmission of Mössbauer radiation, caused by high-frequency periodic swings of the absorber, and the 

corresponding suppression of reactions is studied. 
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Introduction 
 

Interaction of the Mössbauer radiation with 
crystals subject to any alternating fields has been 
studied in numerous papers (see, for example, 
reviews [1, 2]), although there were discussed 
mainly kinematic effects. In other words, most 
papers took into account only single collisions of 
incident photons with atoms of a target. Such a 
kinematical approach is applicable only for thin 
crystals. The problem of multiple scattering of the 
Mössbauer rays inside the vibrating targets, having 
arbitrary thickness, has been addresssed in papers 
[3 - 7]. Unfortunately, these dynamical scattering 
theories are not completely consistent. In particular, 
in [3 - 5] the Mössbauer photons were treated as 
classical electromagnetic waves, goverened by the 
Maxwell equations. The quantum multiple scattering 
equations have been solved in [6, 7], but without 
introduction of the photon wave function. 

Recently new features of Mössbauer forward-

scattering spectra in vibrating crystals were analyzed 

in [8 - 10]. One of the most interesting results was 

obtained by Vagizov et al. [10]. They investigated 

the transmission of single γ-photon through 

vibrating absorber, having fixed the initial moment 

for decay of the excited 14.4 keV level of the nuclei 
57Fe in the source of γ-quanta and by using the time-

delay scheme. The measured detection rate revealed 

sharp deviation from simple exponential decay law, 

that was associated with a distortion of the 

transmitted photon shape. The authors indicated that 

modulation of the photon shape can be used for the 

writing down an information, important for the 

quantum cryptography and communication. The 

experiment [10] has been accompanied by the quasi-

classical calculations. The photon was described by 

a classical electromagnetic wave ( , )E z t , while the 

nuclei were treated as a quantum system. Large 

number of correlated photons of the laser pulse 

really can be described by the classical wave, but 

single photon is a quantum object, for which such 

notions as strengths of the electric field E ( , )z t  or 

the magnetic field ( , )B z t have no clear physical 

sence. The calculations in [10] have been done by 

methods of the classical optics. In particular, the 

electromagnetic wave was assumed to generate E1 

transitions in nuclei 57Fe, although  their excited 

14.4 keV level 3/2+ and the ground one 1/2+ are 

coupled by M1 transitions.  

Of course, it would be much better to describe 

the photon with the help of the wave function. Such 

photon wave function has been derived by 

Bialynicki - Birula [11] and Sipe [12]. Its squared 

modulus defines the probability density to detect the 

photon energy   inside some space interval at the 

moment t . This differs the photon wave function 

( , )F r t  from the wave function ( , )r t of particles 

with mass, which determines the probability to find 

just the particle in any interval.   

We develop here strict quantum-mechanical 

description of single γ-photon transmission through 

vibrating absorber. The photon is described by the 

wave function, proposed in [11, 12]. This wave 

function allows to describe the photon almost in the 

same manner as it is done for massive particles. The 

present paper seems to be the first application of 

such wave function in the γ-optics. Moreover, 

special attention is paid to the effect of anomalous 

transmission of the Mössbauer radiation through 

absorbers oscillating with high frequency, first 

predicted in [7] and observed in [5]. While only 

harmonic oscillations of the absorber were taken into 

account in the theory [10], we regard arbitrary 

periodic motion of the absorber as a whole. Such 

approach may be useful in studies of vibrations with 

large amplitude, when the role of anharmonicity of 

vibrations becomes significant. 
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Scattering amplitude 
 

Let the absorber occupy the region 0  z D , 

where D  is the thickness of the slab. We assume 

that γ-quanta are incident perpendicularly to the 

surface along the axis z , and all the nuclei of the 

absorber vibrate in unison also along the axis z . We 

consider  general case of arbitrary periodic 

oscillations of the absorber, when the corresponding 

displacements of all the nuclei from their 

equilibrium positions are defined by a periodic 

function 0 0( ) = ( )  X t t X t t T  with the period 

= 2 / T , circular frequency  , and the moment 

0t , related to the initial phase of oscillations 0  by 

0 0= t . The nuclear sublevels are assumed to be 

not split and trerefore the polarizations of photons 

are not mixed during passage through the target 

The Raman scattering of γ-quanta in vibrating 

crystal leads to an appearance of  waves with the 

frequencies = =  n nk c n , where n  is an 

integer. In thick targets a rescattering of photons 

between the states nk , λ and nk , λ should be taken 

into account. The corresponding coherent Raman 

scattering amplitude of γ-quanta by the nucleus to 

zero angle is given by [6, 7] 
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where p  is the relative concentration of the 

Mössbauer isotope, eI  and gI  are the nuclear spins 

in the excited and ground states, 2 ( )k We  is the 

Debye - Waller factor ( 22 ( ) ,W   ku where u  is 

the disolacement of the atom from its equilibrium 

position due to thermal vibrations, the brackets mean 

the averaging over phonons),   and   are 

respectively the total and radiative widths of the 

resonant nuclear level with the energy 0
 . 

The coefficients na  are determined by  
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They are nothing but the Fourier-expansion 

coefficients for the exponent ( )ikX te , i.e.,  
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By definition, the integral (2) for the coefficient 

na  denotes the following integral sum: 
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where = /t T N  and = pt p t . It may be rewritten 

as 
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Then one can write down 
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where we introduced the following notation: 
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The summation gives 
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It is easily seen that for p p  
 

NS (p,p ) 0 as N   .          (9) 
 

For = p p  from the definition (7) one gets 
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Combining (9) and (10) one writes 
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where 0m  is the Kronecker symbol. Substitution of 

this expression into (6) gives 
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Performing the summation over p we arrive finally 

at 
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The relation (13) can be called an addition 
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theorem for the expansion coefficients na  in close 

analogy with the theorem for Bessel functions [13]. 
 

The photon wave function 
 

The photon wave function has two vector 

components with helicities = 1   [11, 12]: 
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where ( )e k  are the polarization vectors, the 

frequency kc  and the weight function ( )f k , 

normalized as 
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The modulus squared of the photon wave 

function ( , )F r t  determines a density of the 

photon's mean energy at a given position and time 

[11, 12]. 

Since the energy distribution of the Mössbauer 

radiation is very narrow, we can write down the 

initial wave packet, which describes the incident 

photon, as 
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= /rt t z c  represents the retarded time 
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Here s  and 0  are respectively the width and 

energy of the excited level of the emitting nucleus. 

In Eq. (16) we took into account that 0   since 

the width 0<< s . Factorization of the photon 

wave function (16) allows us to interpret the 

function 2| ( , ) |in z t  as the probability density of 

finding the photon in vicinity of the plane z =const 

at the moment t . For brevity, from now on we use 

the photon wave function in units of 0e . 

The wave packet (16) reaches the target at the 

moment = 0t . In experiments [10] this initial 

moment was fixed by detection of the 122 keV 

photon, leading to the population of the 14.4 keV 

level in 57Fe. In addition, the initial phase of 

vibrations 0 0  t  was also fixed with respect to 

the starting moment = 0t . 

Substitution of Eq. (12) into Eq. (10) yields 
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is the Heaviside step function. The function (19) is 

normalized as 
 

2

0
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that corresponds to one photon incident on the unit 

square of the target. 

The complete wave function, which describes the 

photon passing through the target, is 
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where the function ( , )k z t  satisfies the multiple 

scattering equations, given in [14], when the incident 

photons are described by the plane waves 

exp( ) ikz i t . 

The solutions ( , )k z t differ by the index j , so 

that the complete wave function is represented by a 

sum 
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with the partial waves ( ) ( , ) j

k z t  having the 

components with different frequencies: 
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where the wave vectors ={0, 0, ( )} j jK k , 

and ( ) j  denotes the difference of the wave vectors 

in the medium and vacuum. Note that inside the target 

one can approximate all the vectors nk  by k . 

Multiple scattering equations for the wave 

function ( , )k z t  far from the Bragg condition can 

be reduced to a set of algebraic equations 
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  is a density of atoms in the absorber, (0)cohRf  is 

the coherent Rayleigh forward-scattering amplitude 

of  -quanta by electrons of the atom in the absence 

of the forced vibrations. Its real part reads 
 

0(0) = ,cohRRef r Z                        (27) 
 

where 2 2

0 = /r e mc  is the classical electron radius, 

e  and m  are charge and mass of the electron, Z  is 

the number of atomic electrons. The amplitudes 

obey the following boundary condition at the face 

surface ( = 0)z  of the target [7]: 
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By substituting (1) into Eqs. (25), (26) and using 

the addition theorem (19) one finds the eigenvalues 

of the matrix A  (see also [7]), 
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The corresponding eigenvectors, which satisfy the 

constraint (28), are 
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where ja  determines the amplitude of the j th wave 

and * 0




in

j na e  the fraction of the Raman component 

with the frequency n . Thus, such a wave ( ) ( , ) j

k z t  

inside the target ( 0  z D ) may be written as 
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where we took into account the expansion (17). The 

transmitted wave ( )( , ) j

k trz t  behind the vibrating 

target ( >z D ) is described by the same formula (33) 

but with the factor 
( ) i

j
D

e  instead of 
( ) i

j
z

e . 

It is convenient to replace the energies by the 

dimensionless parameters 
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The modulus squared of the wave function (22) is 

calculated with the aid of (33), yielding 
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where = /  s s , and = 2 e eIm  is the absorption 

coefficient associated with the electrons, = / r Nt  

is the dimensionless time measured in units of the 

nuclear lifetime = / N , 
 

2 ( )
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is the dimensionless thickness parameter, depending 

on the resonance value of the absorption cross 

section 
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and the number of the resonant nuclei per unit 

absorber’s surface 0 = n p D . 

In standard experiments the initial moment of 

decay = 0t  is not fixed. The corresponding flux of 

photons behind the absorber tr  is obtained by 

averaging (35) over time and phase: 

2
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where 0  is the flux of incident photons. 
 

Suppression of inelastic channels and reactions 
 

Let us consider now the case of high-frequency 

vibrations, when 
 

/ 2 <<1. N                              (39) 
 

Moreover, we suppose that the incident radiation is 

tuned closely to the transition in the absorber, 

0 0
   . In this case the forward-scattering 

spectrum consists of well resolved sidebands 

separated by  . Now ( ) 0   N j  if 0j  and, 

as a result, the function ( , )k tr z t  takes the form 
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The photon wave function is obtained by using 

Eqs. (18) and (40) in (22). The resulting integral 

over   can be evaluated with the help of the 

procedure proposed in [15]. Then in the simplest 

case of 0 0=    and =1s  one has  
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The corresponding probability density, averaged 

over the phase 0 , will be  
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Note that here the term 2

0(1 | | ) a  is a sum of the 

amplitudes moduli squared for all the waves 
( ) ( , ) j

k z t except for one with = 0j . So from the 

derived formulas one sees that the attenuation of all 

the waves with 0j  is only caused by the 

interaction with electrons (photoeffect, etc.), while 

the wave (0)( , )k z t  is absorbed by the vibrating in 

unison nuclei in the same manner as in the case of a 

motionless target. Such an anomalous absorption is 

ensured by a coherent mixing of the waves with 

different frequencies, which form the wave 
( ) ( , ) j

k z t . By using the addition theorem (21) for 

the Fourier coefficients na  we find that the 

absorption amplitude jM of such j th partial wave 

by the vibrating nucleus is 
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It is interesting that although every individual 

wave with frequency n  interacts with the nuclei, 

their coherent sum ( 0)( , ) j

k z t  does not. In the case 

of the simple sinusoidal vibrations, when the forced 

dispacements of atoms are described by the function 

0 0( ) = sin( )  X t A t  the coefficients 

0= ( )n na J kA , one can achieve the complete 

suppression of inelastic channels and reactions when 

modulation index 0kA  is a root of the equation 

0 0( ) = 0J kA . 

Of course, the most direct way to observe such a 

phenomenon would be a measurement of the yield 

of conversion electrons ejected from the vibrating 

slab, whose nuclei are excited by the Mössbauer 

radiation. The corresponding reaction cross section 

at the nucleus with coordinates r  is easily obtained 

by making use of the expression (43): 
 

2 (0)

0( ) =| | ( ),r r r ra                         (44) 
 

where (0)( )rr  denotes the reaction cross section in 

the point r  of the target at rest. From Eqs. (36), (37) 

it is clearly seen that only the partial wave (0)( , )rk t  

takes part in the reaction, while the contribution of 

all the others with 0j  is negligible at frequencies 

>> / 2  N . 
 

Conclusion 
 

The photon wave function ( , ) z t  in our 

formulas plays the same role as the electric field 

strength of the classical wave ( , )E z t , used in the 

calculations [10]. Our Eq. (28) for 2| ( , ) |tr z t  in the 

case of harmonic vibrations agree with Eq. (11), 

derived in Ref. [10] for 2| ( , ) |E z t . Therefore the 

present theory can be regarded as a foundation of the 

semi-classical approach [10]. 

Numerical calculations of the transmitted flux 
2| ( , ) |E z t , performed in Ref.[10], well reproduce the 

experimental data. Hence, there is no need to repeat 

numerical calculations for the time-dependent 

function 2| ( , ) |rtr t  in order to get the same result. 

Since 2| ( , ) |tr z t  well describes the experimental 

value of the count rate of   photons measured in 

[10], one can really interpret 2| ( , ) | tr z t t  as the 

probability of detecting the   photon in the time 

gate from t  to  t t . For narrow wave packets such 

a statement is equivalent to the statement that  the 

correspondent function 2| ( , ) |F z t t  means the 

probability density of detecting the energy   in the 

same time interval. Thus, one can treat the 

experiment [10] as the proof that the function 

( , )F r t is really the photon wave function. This 

reveals tight binding of massless photons and 

particles having the mass. 

The anomalous transmission of Mössbauer 

radiation through vibrating crystal, observed in [5], 

has been explained there partly by the coherent 

enhancement of the radiative channel and partly by 

the anomalously weak resonance absorption. But 

according to Eq. (42) the anomalously transmitting 

part of the Mössbauer radiation 2

0(1 | | ) a  is only 

ensured by a weak absorption of the partial γ-waves 

0 j . The remaining partial wave with = 0j , which 
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enters the γ-wave packet, has the same time 

dependence as the wave function of photon 

transmitted through a motionless absorber. This 

means that there is no decay acceleration. Thus, the 

high-frequency vibrations provide the reaction 

suppression, but not the radiative enhancement. 

It is worth to add also that our calculations can be 

useful in studies of deviations of forced vibrations 

from the sinusoidal law caused by anharmonicity or 

any other reasons. 

I am indebted to Dr. A. G. Magner for helpful 

discussion of the results. 
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О. Я. Дзюблик 
 

Інститут ядерних досліджень НАН України, Київ 
 

ПРОХОДЖЕННЯ ГАММА-КВАНТІВ КРІЗЬ ВІБРУЮЧИЙ ПОГЛИНАЧ 
 

У рамках квантової теорії аналізується проходження мессбауерівських γ-квантів крізь вібруючий поглинач. 
З цією метою фотони описуються хвильовою функцією Бялініцкі - Бірули. Ми розрахували часову залежність 
хвильових пакетів, які описують γ-фотони, що пройшли. Показано, що квадрат модуля цієї хвильової функції 
визначає швидкість детектування γ-фотонів у повній відповідності з частинками, які мають масу. Вивчається 
ефект аномального проходження мессбауерівського випромінення, викликаний високочастотними періодични-
ми коливаннями поглинача, та відповідне подавлення реакцій. 

Ключові слова: ефект Мессбауера, гамма-квант, вібрації, хвильова функція фотона, динамічна теорія 
розсіяння, аномальне проходження. 
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ПРОХОЖДЕНИЕ ГАММА-КВАНТОВ СКВОЗЬ ВИБРИРУЮЩИЙ ПОГЛОТИТЕЛЬ 
 

В рамках квантовой теории анализируется прохождение мессбауэровских γ-квантов сквозь вибрирующий 
поглотитель. С этой целью фотоны описываются волновой функцией Бялиницки - Бирулы. Мы рассчитали 
временную зависимость волнового пакета, который описывает прошедшие γ-фотоны. Показано, что квадрат 
модуля этой волновой функции определяет скорость детектирования γ-фотонов в полном соответствии с 
частицами, имеющими массу. Изучается эффект аномального прохождения мессбауэровского излучения, 
вызванный высокочастотными периодическими колебаниями поглотителя, и соответствующее подавление 
реакций. 

Ключевые слова: эффект Мессбауэра, гамма-квант, вибрации, волновая функция фотона, динамическая 
теория рассеяния, аномальное прохождение. 
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