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STATISTICAL DENSITY OF NUCLEAR EXCITED STATES

A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in
excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* <m is used. The approach
provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It
is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small
temperatures T <1MeV but reduce strongly the results for the excitation energy at high temperatures. By use of

standard Woods - Saxon potential and nucleon effective mass m"=0.7m the A-dependency of the statistical level
density parameter K was evaluated in a good qualitative agreement with experimental data.
Keywords: level density, excited nuclei, nuclear temperature, nucleon effective mass, continuum levels.

Introduction

The methods of statistical physics and thermo-
dynamics are essential elements of the theory of
highly excited nuclei. An application of statistical
methods in nuclear physics covers many observable
characteristics such as the statistical level density,
the resonance energies and widths, the average
cross-sections of nuclear reactions, the yields in
nuclear fission, etc.

A significant part in an analysis of statistical
properties of excited nuclei plays the statistical level
density p(E,) for a given excitation energy E,,
which has been a subject of many theoretical and
experimental investigations in nuclear physics [1 -
8]. A key element of a study of the statistical level
density p(E,) is the single-particle level density
g(g) , associated with the nuclear mean field and
thereby the nuclear shell model of the non-
interacting nucleons [2]. In most realistic model
calculations one takes into consideration also the
effects of correlated interaction, pairing effects,
rotation and vibration states, etc. One can, however,
expect that for the highly excited nuclei at the
excitation energy E, of order of the nuclear
binding energy E,, «c7-+8MeV and higher, where
the inter-level distance AE =1+10eV is much
smaller than the effect of the strong inter-particle
interaction v, > AE , the inter-particle interaction
does not perturb essentially the average level density
p(E,,) leading to the inter-level mixing only.
Moreover the particle-hole excitations, which are
generated by a nuclear mean field and which
establish the nuclear compound states at the
excitation energy E,,, represent a full set of states
and the residual interaction provides a redistribution

of these states only. Thus, the reasonable
background for the statistical level density

calculations in the case of the highly excited nuclei
could be the shell-model results [8] which based on
an accurate evaluation of the single-particle level
density g(e). Note also that the adequate use of the
realistic finite-depth potential well, such as a Woods
- Saxon potential, for calculations of the statistical
level density of highly excited nuclei requires the
knowledge of the single-particle level density g(g)
for a wide range of single-particle energy ¢,
including the continuum region [8]. A proper
accounting for the continuum states is also important
for determining nuclear properties in the case of the
pre-equilibrium decay from states with a small
exciton number [9, 10].

The aim of this work is the investigation of the
influence of the finite depth of realistic single-
particle potential on the statistical level density
p(E,) . We use the finite-depth Woods - Saxon
potential and apply the semi-classical Thomas -
Fermi approach which is quite reasonable for the
highly excited nuclei where the quantum shell
effects are suppressed.

Statistical level density within Fermi-gas model.
Landau's conception of quasi-particles

The statistical level density p(E,,) ~ expS(E,,) is
related to the entropy S(E,,) and can be evaluated by
use of the Darvin - Fowler method [1, 5]

p(E,,) < expS(E, ) = exp(z aE,, ) —exp(2aT), (1)

where a is the level density parameter, T is the
temperature  and  the  excitation energy
E, =E_(T)=aT? is referred to the ground state. In

the case of simplest Fermi-gas model, the level
density parameter a for the nucleus with mass

number A can be estimated as [2]

© V. M. Kolomietz, 2015

115


https://doi.org/10.15407/jnpae2015.02.115

V.M. KOLOMIETZ

1
a=-m'g(eg), )
6
where g. =40 MeV is the Fermi energy. We will

also use the inverse density parameter K which is
derived as

K=2, @®)
a

In two cases of the 3D-harmonic oscillator (HO) and
the infinite-depth square potential well (SQ) of radius

R, =, A", 1, =1.2 fm, one has, respectively,

1,A A .
g)=—-n"—, a,,~— MeV
gHO( F) 4 8': HO 16
and
2 (2m 312 A
3 -1
01~ (53] R a5V

Both these results for g,,(e-) and gy, (eg)lead
to a significant exceeding of the statistical level
density parameter K , see below Fig. 5. One of
cause of such kind of the exceeding for K in Fig. 5
is the oversimplified assumption (2) for the level
density parameter a where the single-particle level
density g(e) is taken at the Fermi energy e=¢..
Considering the heated nuclei and following the
definition (1) of the statistical level density p(E,,),
we should assume the high enough excitation energy
E. such that the temperature T can be introduced.

ex
In the case of low enough temperatures T < g the
excitation energy E_(T) is derived by the
calorimetric relation E_, (T)~aT?. This relation can

be used for the thermodynamic derivation of the
level density parameter a . Namely,

a=E_(T)/T> (4)

A significant point is that in the case of T < g,
the excitation energy E, of a strong interacting
Fermi-system is derived by the variation on(e, T)
of the occupation number n(e, T) in close vicinity
to the Fermi energy €., see below Fig. 4. This fact
allows us to apply the Landau's conception of Fermi-
gas of quasi-particles [11, 12] to the strong
interacting nucleons in a nucleus. The excitation
energy E, of the nucleus is then written as

E.(T)=E(T)-E(T =0) = [de & g(s) n(s, T), (5)

where dn(e, T)=n(g, T)—6(e- —€) . The occupa-
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tion numbers n(g, T) are given by the Fermi
function

1
“1rexp[(e—2)/T]’

n(e, T) (6)

where X is the chemical potential which is, in
general, temperature dependent A =A(T) . The value

of A(T) is obtained from the conservation of
particle number A:

A= [de g(e) n(e, T). @)

Applying the small temperature expansion with
T < g, one obtains from Egs. (6) and (7)

TE2 T2

AMT)=ep ———. 8
(M)~ e, 12 e, (8)
Note also that the values of E_(T) and A(T) are

different for both the neutron and proton
components. The expression (5) contains the energy-
dependent level density g(e) and the final result for

a can be sensitive to the single-particle level
distribution near the Fermi energy e . As it was
mentioned earlier, this fact is ignored in Eq. (2).

Single particle level density within
Thomas - Fermi (TF) and extended
Thomas - Fermi (ETF) approximations

Let us consider the number of particles N,
embedded in a potential well V(r) with energy

below ¢ . Using the Wigner distribution function in
phase space f(r, p), one can write

_ ¢ drdp
Ng—zjaa%ﬁf(npnmm, ©)

where factor 2 in front of integral is caused by the
spin degeneracy and p, = p,(r) is derived by the
following relation

p; _ pi(r)

£ =~ =g-V(r). 10
o = om (r) (10)
Note that the expression (9) must be written for both
the neutron and the proton components. The single-
particle level density g(e) is derived by N_ as

9) = SN, GEN
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Thomas - Fermi approximation

In the case of the Thomas - Fermi (TF) the
distribution function f.(r, p)|psp is given by

f(r, p)|pgp5=®[pg(r)—p] and the number of

particles N, takes the form

TFe I

:ZJ- drdp

(2mh)’
Integrating in Eq. (12) over p, one obtains

dr dp f

(2n h) (T, p)|pgpg =

70[p.(r) - pl, (12)

1 2 3/2 "
NTF,azy(h—Tj arle-v (NI e[e-v (1],

Extended Thomas - Fermi approximation

The Thomas - Fermi approximation can be
extended taking into consideration the corrections up

to order of A#° in the Kirkwood’s # -expansion of
the  distribution  function f(r,p). The

corresponding extended Thomas - Fermi (ETF)
distribution function f..(r, p) reads [13, 14]

fere TP, =OIP.(1) = P+ 2 (V) ((r) &) +

+= [(VV) +—

(IO VVIE'(h(n-e} (14

where h(r) = p?*/2m+V (r) . Substituting Eq. (14)
into Eq. (9) and integrating over p , we obtain

(13) _ drdp
| NETF,g J.(Z h)3 fETF( ' p)|pgva (15)
Nere. = Nre s _%\IZ_TJ.dr vy (r)1/2 E [VV(r)];z ®[8 -V (r)] (16)
’ v 247\ A [e-V(N]" 4[e-V(N)]

Note that the value N, taken at e=g. represents |

the total number of particles in the ground state of
the Fermi system

dr dp

where p is the Fermi momentum and p,, (r) is the

particle density in the ground state of the nucleus.
Using Egs. (16) and (17), we recover well known
result for the particle density p,, g (r) in the ETF

e =2[ (2nh)? f(r. o)., = [dr p,(r), (17)| approximation [15]
Prae (1) =) [P0 | VO L TWVOL o, v o] (18)
eq,ETF eq,TF 247'52 hZ [SF _V(r)]]JZ 4 [SF —V (r)]3/2 F '
where ! Effective mass
1 (2m\*? o As already mentioned above, we can use the
Peqre(F) = (hzj [er —V(NI"*O[e -V (r)].  Landau’s quasi-particle conception to derive the
(19) excitation energy E,(T) and thereby the level

The expression (16) can be simplified. Using the
relation

(VW) o W, VY
[SF _V ]3/2 [S—V ]1/2 [8 _V ]1/2

and the Gauss - Ostrogradsky theorem, we will
reduce Eq. (16) to the following final result

(20)

1
48r

2m VA/(r) _
N F Idr—[g_v(r)]m O[e-V(n)].

ETFe — 'NTFe

density parameter a, see Egs. (4) and (5). The
quasiparticle conception implies that the effective
mass m*<m of quasi-particle appears in the single
particle Hamiltonian h(r) = p*/2m* +V(r) and the
mass m in Egs. (16) and (20) must be replaced by
the effective mass m* . One of consequence of such

kind of replacement m—m" is that the Fermi

energy &, = pZ /2m is shifted up
Pr Pe _ P
P g Pe S P 21
om0 = 2m*~ 2m 21)
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(Note that the Fermi-momentum p. ~pg° s

derived by the nuclear bulk density p, which does
not depend on m.) The commonly used [2]
parameterization of the shell model mean field V (r)
is adopted to the experimental data for the Fermi
energy (or separation energy) e, . Therefore, the
shift up of the Fermi energy e in Eq. (21) requires
the relevant shift of the shell model mean field V (r)
to provide the conservation of an initially fixed
separation-energy. To achieve that the bottom of the
mean field V(r) must be shifted down by factor
m/m" and the mean field V (r) is modified by the
effective mass as

1 2m’
NETF,s = ?_{dr( i

Note that the nucleon effective mass m”

general, r-dependent m*=m"(r) and includes two

contributions caused by the non-locality of the
nucleon-nucleon interaction (momentum-dependent

effective mass m,(r) ) and the correlation correction
(frequency dependent effective mass m; (r) ) [8, 16].

is, in

Continuum effect
on the single-particle level density

For a finite depth potential V(r) the single-
particle level density g(g) includes both the bound-
states and the continuum-state contributions. The

J [a—v*(r)]3’2®[s—v*(r)]—1

el

V(r)—V'(r) = %V(r). (22)
Finally, we obtain from Eq. (20)
Nere. = Noe _iz_..dr (zn;*j x
’ Y 48m h
< L(r)me[g v'n] (@)
[e-V'(n)]

Below, we will restrict ourselves to a spherical mean
field V(r) and rewrite Egs. (23) and (24) as

“e[e-V'(n] sz (N, 2V (r)}

[ V(r)] r or
(24)

|requires the high accuracy to prevent a spurious

contribution to the excitation energy E, of Eq. (5).

Such kind of spurious contribution is caused by the
free space states which are not related to the
potential well V(r) . The corresponding free-space

number of particles N is created by the free-

free,e

space states 2drdp/ (2r2)® and it is given by [8]

1 (2m’
Nfree,s = 37‘c2 ( J Idr 83/2 @(S)

The number of states Eq. (20) should be then
corrected by subtracting of the contribution g, (€) .

(25)

numerical calculations of the level density g(e) | The final result reads

Nere,. = J‘dl’[

j {[s—v*(r)]3’2®[s—v*(r)]—s3/2@(8)}—

20 (26)

1 om’ 12
——| dr rrz1 r’
12r70 n

Note that the procedure of subtracting of the free-
state contribution N from the continuum states

free, e

agrees with the results of phase-shift analysis of the
single-particle levels in continuum (resonance
states), see Refs. [8,17]. In particular, the
subtraction of the free-state contribution N

free, ¢

provides the fulfillment of the Levinson's theorem
[18] which establishes the relation between the
phase shift at zero energy and the number of bound
states.
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| Single particle level density

Evaluating the single particle density g(g) , we
will apply our consideration to two potentials V (r) :
(i) Trapezoidal (TR) potential well V,(r) and (ii)
Woods - Saxon (WS) potential V,,(r) .

Trapezoidal potential well

We will adopt the following form of trapezoidal
mean field



STATISTICAL DENSITY OF NUCLEAR EXCITED STATES

V, r<R-D
Vi (1) =4(@/2)V,[1-(r-R)/D] R-D<r<R+D,
0 r>R+D
(27)
where
V0=—54+33t3E MeV
A
Ro 1/3
R=——0% R/ =112-A”+10 fm,
[1+(D/R)?]

D=nd, d=0.7 fm.

Here, t, =1 for a neutron and -1 for a proton. Using

the trapezoidal potential (27) and the Thomas -
Fermi approximation, the single particle density
O.(e) can be evaluated analytically. The final

result reads, see also Ref. [8],

«\3/2
gTF(s):Z—iz(Zhin (s—VO*)1’2[1+2x+§x2+%x3}
(28)
where
2D (e-Vy)
~ (R-DV,

The free-gas level density Q. (e) is derived by
Egs. (25) and (11)

1 2m* 3/2
9“7(7) "

An(R+D)* 4, 8 , 16 ,
X 3 € [1+2y+5y +35y } (29)
where
B 2D ¢
(R+D)V,

In Fig. 1 we show the neutron single-particle

level density for the nucleus **Pb obtained from
Egs. (28) and (29). The dashed lines are obtained
using equations (28) and (29) for the infinite
trapezoidal potential, and the solid lines are for the
finite-depth trapezoidal potential of Eq. (27). The
lines 1 and 2 are for different values of diffuseness
parameter d =0.7 fm and d =0.1fm.

As one can see from Fig. 1, the subtraction of
the continuum states reduces significantly the
single-particle level density for £€>0. Note also
that, due to the finite size of the nuclear potential
well, one has for the continuum region &€>0 that
g(e) decreases with increasing ¢ . That means that

20

g MeV™!
»

~40 -20 0 20 40

¢, Meh

Fig. 1. The neutron single-particle level density for
nucleus “®Pb for the trapezoidal potential assuming
m*=m . The lines 1 and 2 are for different values of
diffuseness parameter d =0.7fm and d =0.1fm. The

dashed lines are for the infinite trapezoidal well.

a proper treatment of the continuum is important for
determining nuclear properties such as the level
density of hot nuclei and the exciton level density at
high excitation energy. The results of Fig. 1 show
also that the reduction of the diffuseness parameter
d of surface layer changes the behavior of level
density g(e) , which is g(g) ~&® (oscillator-like)
for a smooth surface (curvel in Fig.1l) to
g(a)~\i5 (square well-like) for a sharp surface
(curve 2 in Fig. 1).

The #* -corrections and the corresponding ETF
values of the level density g(e) and the number of
particles N_ of can be evaluated using Eqgs. (11),
(26) and (27). For the #* -correction N to the

number of particles one obtains
Neorr e = Vo f2m ) “Cdrr
“re T 12nD | K Juo

where V,"(r) =V, [1-(r—R)/D]/2.
In Fig. 2 we have plotted the number of particles
N_ embedded in trapezoidal potential with energy

below ¢ evaluated within the Thomas - Fermi

corr, e

CIERAG]
|:g —Vl*(r)]llz !

(30)

approximation in comparison with the #* -correc-
tion N which is provided by the ETF approxi-

corr, e
mation of Eq. (30). As one can see the #* -correc-
tion N is negative and negligible small, i.e., the

corr, e
corrections due to the ETF approximation play the
minor role. Following this result, we will below
restrict ourselves to the Thomas - Fermi approxi-
mation only.
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Fig. 2. Number of particles N, within Thomas - Fermi
approximation (solid line) and #° -correction N___ .

(dashed line) for the trapezoidal potential for the nucleus
“®pph with m* =m.

Woods - Saxon potential

We will use the Woods - Saxon potential in the
following form

N-Z 1
Vs () =V, +33t .
ws 1) { ° A }l+exp[(r—R0)/d]
(31)
We will adopt the following parameters
V,=-58MeV, R,=r,A”, r=112fm and

d =0.5 fm [2]. The mean field of protons includes
also the Coulomb potential

2—623[3—(L” (r<R.)
R 2| (R 2

Ve =
2
z (r=R)
r
where e’ =144 MeV-fm, R.=r.A” and

. =1.24 fm.

Using the results of previous sections, we have
evaluated the single-particle level density for the WS

potential. Fig. 3 shows the TF result for the neutron
level density g (e) for the nucleus **Pb with
effective m*=m  (dashed and
m*=0.8m (solid line).

Note that the effective mass m"=m affects
significantly the slope of curve g,(¢) for the
bound states with energy e <0 . This fact plies an

important role for the calculations of the excitation
energy and the entropy of the heated nuclei, see
next Section.

mass line)
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s \j -2
=40 =20 0 20 40
e MeV
Fig. 3. The neutron level density g,(¢) for the nucleus
*®pp within the Thomas - Fermi approximation. The
dashed line is for m"=m and the solid line is for
m*=0.8m.

Nuclear excitation energy
and statistical level density parameter

Assuming the Landau's conception of Fermi-gas
of quasiparticles, we will apply Eq. (5) to evaluate
the nuclear excitation energy E,. The Landau's

conception of quasiparticles requires that the
integrand f(g)=¢g(e) on(e,T) in Eqg. (5) should
be localized near the Fermi energy ¢.. In Fig. 4 we
have plotted the integrand f(g) for the nucleus

“®pph for two temperatures T =1MeV and
T =3MeV.
150 1
100 '![I&Ph f
solid - T= 1Mev il
dashed - T = 3MeV |
o a
_s0 |
—100 N
—50 —40 -30 -20 -10 0 10 20
e, MeV

Fig. 4. The integrand f(e)=eg,(e) dn(e, T) in Eq. (5)
for the neutron excitation energy E, for the nucleus
2%pph for two temperatures T =1MeV and T =3 MeV..

As can be seen from Fig. 4, the integrand f (g)
of Eg. (5) is localized near the Fermi energy
(gr =—8.37 MeV for **Pb in Fig. 4) quite well
even for the relatively high temperature T =3 MeV.

This fact confirms the Landau’s conception of
quasiparticles and allows one to use Eq. (5) to
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evaluate the nuclear excitation energy. Note also that
for high temperatures (e.g., T=3MeV in Fig. 4)

the integrand f(g) in Eq. (5) penetrates into the
region of continuum states e >0 and the continuum

effect on the single-particle level density (see
previous Section) has to be taken into consideration.
In Table we show the results of calculations of

The results of calculation of the Fermi energy &

the Fermi energy ¢, , , the level density parameters
a, (g=n for neutron and q=p for proton) and
the inverse parameter K=A/(a,+a,) for three

spherical nuclei “Ca, “Ca and *®Pb. All results
were obtained wthin the Thomas - Fermi approxima-

tion: TF with m* =m and TF  with m*=0.7m .

r ¢ the statistical density parameter a, and the inverse density

parameter K for different nuclei. The calculations were performed within the Thomas - Fermi (TF)
approximation with Woods - Saxon potential

Nuclei Een e & & € Sk p a, a, K
TF* TF* TF TF TF TF TF TF TF TF
©ca | -17.25 | -5.49 3.04 3.03 6.59 -12.08 |-385 | 4.36 3.40 5.15
“Ca | -7.68 -17.62 | 5.14 2.77 6.07 -5.38 -12.34 | 7.05 3.96 4.36
2%ppy | -6.95 -8.39 5.92 8.74 8.43 -487 |-5.88 20.78 11.99 6.34

* Means that the effective mass m* =0.7m was used.

Fig. 5 shows the comparison of the experimental
data (solid points) and the evaluated values of
inverse parameter K within the TF approximation

with Woods - Saxon potential.
square well
2 3D oscillator

R

m” =07 m

. $
[ . [ s* ; e
R i . St

m" = m

Fig. 5. Experimental values of K for even-even nuclei

(solid points) from Ref. [5]. The solid lines are for the TF
calculations with Woods - Saxon potential in two cases
m“=m and m"=0.7m. The dashed lines are for the 3D

oscillator potential and the infinite-depth square potential
well, see above g,,(gr) and gg,(&r).

The results of Fig.5 demonstrate a quite
satisfactory description of average behavior of the
A-dependency of the statistical level-density
parameter K obtained within the Thomas - Fermi

approximation by use of the realistic Woods - Saxon
potential. Two aspects are important for such kind of
description: (i) the energy dependency of single
particle level density g(g) , in particular, the slope

of curve g(g) in vicinity of the Fermi energy

e~gg; (ii) the effective mass of nucleon m; <m,

which reflects the Landau's conception of the Fermi
gas of quasiparticles.

The continuum states in single-particle level
density g(e) do not affect significantly the
thermodynamic calculations of the nuclear excitation
energy E, and the statistical level density
parameter K for sufficiently small temperatures
T <1 MeV. However, the procedure of the correct

subtracting of the free-state contribution from the
continuum states plies an important role for high
temperatures. The influence of the continuum
correction to the single-particle level density on the
nuclear caloric curve E_ (T) is shown in Fig. 6.

1000 - -
800 .
. “% phy
% 600
=
Z
2 400
200 )
0 b y
1 2 3 4 5 6
T, MeV

Fig. 6. The caloric curve of nucleus *®*Pb . The dashed
line is without of subtracting of the free-state contribution
Nieo. (s€€ Eq. (25)) from the continuum states and the

solid line is where continuum states were corrected in
agreement with Eq. (26).
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As seen from Fig. 6, the subtracting of the free-
state contribution N from the continuum states

free, e
reduces significantly the result for the excitation
energy E,, (solid line) in the case of high enough

temperatures. Note also that the correct description
of continuum states can be important in the case of
nuclei beyond the stability line where the Fermi
energy is located close to the edge of potential well.

Summary and conclusion

In present paper, we have applied the standard
thermodynamic derivation of the statistical level
density p(E,) and the statistical level density

parameter K to the finite nuclei. The key element
of such kind of approach is the excitation energy
E., of a nucleus. In general, the calculations of the
excitation energy E,, of strong interacting system

like a nucleus is extremely complicate problem. A
significant progress is here achieved by use of the
Landau's conception of quasiparticles where the
excitation energy E, is derived similarly to a

noninteracting Fermi-gas and depends thereby on
the single-particle level density g(g) .

Using the Wigner distribution function in phase
space f(r, p), we have presented the semiclassical

derivation of the single-particle level density g(e) .

Two approximations, namely Thomas - Fermi (TF)
and Extended Thomas - Fermi (ETF), have been
analyzed. Evaluating the number of particles N,

embedded in potential well V (r) with energy below
e, we have shown that the #A° -corrections to
N, caused by the ETF approximation play a minor

role and we have restricted our consideration by the
Thomas - Fermi approximation only.

Applying the Landau’s  conception  of
quasiparticles, we have introduced the nucleon

effective mass m“<m. It was shown that the
effective mass m"=m affects significantly the
slope of curve g(g) for the bound states with
energy e <0 in vicinity of the Fermi energy e~¢.,
see Fig. 3. This fact plies an important role for the
calculations of the nuclear excitation energy E,, and
the statistical level density parameter K.
Considering the realistic finite-depth potentials
V(r), we have paid a special attention to the
accuracy of derivation of the level density g(g) for
the continuum states to prevent a spurious
contribution to the excitation energy E, which is
caused by free space states and which is not related
to the potential well V(r). Our numerical
calculations for the Woods - Saxon potential show
that the correct subtracting of the free-state
contribution from the continuum states reduces
significantly the result for the excitation energy E,,
in the case of high enough temperatures, see Fig. 6.
The numerical calculations of the inverse level
density parameter K have been performed for the
Woods - Saxon potential well. We have used a
standard parameterization of WS potential without
the adjustable parameters. We have shown (see
Fig. 5) that the Thomas - Fermi approximation with

the effective mass of nucleon m*=0.7 m provides a
quite satisfactory description of average A -depen-
dency of the statistical level density parameter K .
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B. M. Koaomieun

Inemumym adepuux docnioocens HAH Yxpainu, Kuis

CTATUCTUYHA I'YCTHUHA 3BYJXEHUX CTAHIB A1EP

KBaziknacnyHe HaOJIM)KEHHS 3aCTOCOBAHO O PO3PaxXyHKYy OJHOYACTHHKOBOI Ta CTAaTUCTHYHOI T'YCTHHHU 30YIKEHHX
craniB saep. Bukopucrano xoHueniito Jlanaay npo epekTHBHY Macy HykaoHa M°<m. Jlanuil miaxin 3abesnedye
KOPEKTHHH ONHC BHECKY DPIBHIB CYIIUIFHOTO CIIEKTPa B PEATICTUYHHX SASPHUX MOTEHIIadaX CKiHUYEHOi IIHMOWHH.
INoka3zaHo, IO CTaHW CYLIUJIBHOTO CIIEKTpa HE BIUIMBAIOTH CYTTEBO HA TEPMOIMHAMIYHI PO3PaxXyHKH IIPH AOCTaTHHO
Manux temreparypax T <1 MeB, ajie 3HauHO 3MIiHIOIOTH PE3yJIBTATH MPU BHCOKUX TeMIepaTypax. BukopucToByroun
cranmapTHuil orenuian Byaca - Cakcona Ta e)eKTUBHY Macy HyKJIOHiB m™=0,7m , obpaxoBaHa 3aJ€XkKHICTh CTaTHC-

tigHoro mapamerpf ryctunu piBaiB K Bim umcna HykimoHiB A, sika 100pe Y3rOUKYETHCS i3 eKCIIepUMEHTATbHIMHE
JaHVMH.

Kniouosi cnosa: ryctuHa piBHIB, 30y/KeHI sipa, siiepHa TeMieparypa, e(ekTHBHa Maca HYKJIOHA, CYLIIbHHNA
CIIEKTp PiBHIB.

B. M. Kosiomnen
Hucmumym adepuvix uccaedosanuiit HAH Yxpaunvl, Kues
CTATUCTUYECKAS IJIOTHOCTb BO3BYKJIEHHbIX COCTOSIHUM SIJIEP

KBasuxiiaccuueckoe HpUOIIKEHHE HCIOJIB30BAHO JUIS pacdyeTa OJHOYACTHYHOW M CTATHCTUYECKOM IIOTHOCTH
BO30Y)KIEHHBIX COCTOsHMIA szep. Vcnonbp3oBana Kouuenus Jlannay shpeKTuBHON Macchl HyKJIoHa M < m . JlaHHbIH
noaxoJ; o0ecrevynBaeT KOPPEKTHOE OINMMCaHHE BKJIAJa YPOBHEW CIUIOIIHOTO CIEKTpa Uil PeaJHMCTHYECKUX SACPHBIX
IMOTCHIIMAJIOB KOHEYHOM FJ'[y6I/IHI)I. HOKaSaHO, YTO COCTOSAHHA CIUIOINHOTO CIEKTpa HE BJIMAIOT CYHIECTBEHHO Ha
TEpMOAMHAMUYECKHE pPACUYETHl TPH [JOCTATOYHO MaiblXx Temmepatypax | <1 M»sB, HO 3HauMTEIBHO MEHSIOT
pe3yibTaThl HpW BBICOKMX Temrmeparypax. C HCHONb30BaHMEM CTaHAApPTHOTO moTeHnuana Bynca - CakcoHa wu
sdhekTHBHOM Macchl HyKIoHa M’ =0,7M BbIYKCIEHA 3aBUCHMMOCTD CTATUCTHYECKOTO MAapaMeTpa IIOTHOCTH YPOBHEH
K ot umcna HYKJIOHOB A, KOTOpast HaXOAUTCA B XOPOUIEM COIJIaCUM C DKCIEPUMCHTAJILHBIMU JaHHBIMH.

Kniouesvie cnosa: IOTHOCT ypOBHEH, BO3OY)KACHHBIE siapa, AAepHas TeMrepaTypa, 3G (eKTUBHAs Macca HyKJIOHa,
CIUIOLIHOM CIIEKTP YPOBHEH.
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