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STATISTICAL DENSITY OF NUCLEAR EXCITED STATES 
 

A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in 

excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass  m m  is used. The approach 

provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It 

is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small 

temperatures 1MeVT  but reduce strongly the results for the excitation energy at high temperatures. By use of 

standard Woods - Saxon potential and nucleon effective mass 0 7 m . m  the A-dependency of the statistical level 

density parameter K was evaluated in a good qualitative agreement with experimental data. 
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Introduction 
 

The methods of statistical physics and thermo-
dynamics are essential elements of the theory of 
highly excited nuclei. An application of statistical 
methods in nuclear physics covers many observable 
characteristics such as the statistical level density, 
the resonance energies and widths, the average 
cross-sections of nuclear reactions, the yields in 
nuclear fission, etc. 

A significant part in an analysis of statistical 

properties of excited nuclei plays the statistical level 

density ( ) exE  for a given excitation energy exE  

which has been a subject of many theoretical and 

experimental investigations in nuclear physics [1 - 

8]. A key element of a study of the statistical level 

density ( ) exE  is the single-particle level density 

( )g , associated with the nuclear mean field and 

thereby the nuclear shell model of the non-

interacting nucleons [2]. In most realistic model 

calculations one takes into consideration also the 

effects of correlated interaction, pairing effects, 

rotation and vibration states, etc. One can, however, 

expect that for the highly excited nuclei at the 

excitation energy exE  of order of the nuclear 

binding energy 7 8 MeV exE  and higher, where 

the inter-level distance 1 10  E eV  is much 

smaller than the effect of the strong inter-particle 

interaction int v E , the inter-particle interaction 

does not perturb essentially the average level density 

( ) exE  leading to the inter-level mixing only. 

Moreover the particle-hole excitations, which are 

generated by a nuclear mean field and which 

establish the nuclear compound states at the 

excitation energy exE , represent a full set of states 

and the residual interaction provides a redistribution 

of these states only. Thus, the reasonable 

background for the statistical level density 

calculations in the case of the highly excited nuclei 

could be the shell-model results [8] which based on 

an accurate evaluation of the single-particle level 

density ( )g . Note also that the adequate use of the 

realistic finite-depth potential well, such as a Woods 

- Saxon potential, for calculations of the statistical 

level density of highly excited nuclei requires the 

knowledge of the single-particle level density ( )g  

for a wide range of single-particle energy  , 

including the continuum region [8]. A proper 

accounting for the continuum states is also important 

for determining nuclear properties in the case of the 

pre-equilibrium decay from states with a small 

exciton number [9, 10]. 

The aim of this work is the investigation of the 

influence of the finite depth of realistic single-

particle potential on the statistical level density 

( ) exE . We use the finite-depth Woods - Saxon 

potential and apply the semi-classical Thomas - 

Fermi approach which is quite reasonable for the 

highly excited nuclei where the quantum shell 

effects are suppressed. 
 

Statistical level density within Fermi-gas model. 

Landau's conception of quasi-particles 
 

The statistical level density ( ) exE exp ( )exS E  is 

related to the entropy ( )exS E  and can be evaluated by 

use of the Darvin - Fowler method [1, 5]  
 

   ( ) exp ( ) exp 2 exp 2 ,   ex ex exE S E aE aT (1) 

 

where a  is the level density parameter, T  is the 

temperature and the excitation energy 
2( ) ex exE E T aT  is referred to the ground state. In 

the case of simplest Fermi-gas model, the level 

density parameter a  for the nucleus with mass 

number A  can be estimated as [2]  
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( ),

6
  Fa g                           (2) 

 

where 40 MeV F  is the Fermi energy. We will 

also use the inverse density parameter K  which is 

derived as 
 

.
A

K
a

                                 (3) 

 

In two cases of the 3D-harmonic oscillator (HO) and 

the infinite-depth square potential well (SQ) of radius 
1/3

0 0 ,R r A  0 1.2 fmr , one has, respectively, 
 

2 11
( ) , MeV

4 16

   


HO F HO

F

A A
g a  

and 
3/2

3 1

02

2 2
( ) , MeV .

3 23

 
    

  
SQ F F SQ

m A
g R a  

 

Both these results for ( )HO Fg  and ( )SQ Fg lead 

to a significant exceeding of the statistical level 

density parameter K , see below Fig. 5. One of 

cause of such kind of the exceeding for K  in Fig. 5 

is the oversimplified assumption (2) for the level 

density parameter a  where the single-particle level 

density ( )g  is taken at the Fermi energy   F . 

Considering the heated nuclei and following the 

definition (1) of the statistical level density ( ) exE , 

we should assume the high enough excitation energy 

exE  such that the temperature T  can be introduced. 

In the case of low enough temperatures FT  the 

excitation energy ( )exE T  is derived by the 

calorimetric relation 2( ) exE T aT . This relation can 

be used for the thermodynamic derivation of the 

level density parameter a . Namely, 
 

2

ex ( ) / .a E T T                             (4) 
 

A significant point is that in the case of FT , 

the excitation energy exE  of a strong interacting 

Fermi-system is derived by the variation ( , ) n T  

of the occupation number ( , )n T  in close vicinity 

to the Fermi energy F , see below Fig. 4. This fact 

allows us to apply the Landau's conception of Fermi-

gas of quasi-particles [11, 12] to the strong 

interacting nucleons in a nucleus. The excitation 

energy exE  of the nucleus is then written as 
 

( ) ( ) ( 0) ( ) ( , ),exE T E T E T d g n T          (5) 

 

where ( , ) ( , ) ( )      Fn T n T . The occupa-

tion numbers ( , )n T  are given by the Fermi 

function 
 

 
1

( , ) ,
1 exp ( ) /

 
  

n T
T

                  (6) 

 

where   is the chemical potential which is, in 

general, temperature dependent ( )   T . The value 

of ( ) T  is obtained from the conservation of 

particle number A : 
 

( ) ( , ).   A d g n T                         (7) 

 

Applying the small temperature expansion with 

FT , one obtains from Eqs. (6) and (7) 
 

2 2

( ) .
12


   


F

F

T
T                        (8) 

 

Note also that the values of ( )exE T  and ( ) T  are 

different for both the neutron and proton 

components. The expression (5) contains the energy-

dependent level density ( )g  and the final result for 

a  can be sensitive to the single-particle level 

distribution near the Fermi energy F . As it was 

mentioned earlier, this fact is ignored in Eq. (2). 
 

Single particle level density within 

Thomas - Fermi (TF) and extended 

Thomas - Fermi (ETF) approximations 
 

Let us consider the number of particles N  

embedded in a potential well ( )rV  with energy 

below  . Using the Wigner distribution function in 

phase space ( , )r pf , one can write 

 

3
2 ( , ) ,

(2 )

r p
r p


 


 p p

d d
N f                (9) 

 

where factor 2 in front of integral is caused by the 

spin degeneracy and ( )r p p  is derived by the 

following relation 

 

2 2( )
( ).

2 2

r
r    

p p
V

m m
                   (10) 

 

Note that the expression (9) must be written for both 

the neutron and the proton components. The single-

particle level density ( )g  is derived by N  as 

 

( ) . 


d
g N

d
                              (11) 
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Thomas - Fermi approximation 
 

In the case of the Thomas - Fermi (TF) the 

distribution function TF( , )r p
p p

f  is given by 

TF( , ) [ ( ) ]r p r



  

p p
f p p  and the number of 

particles N  takes the form  
 

TF, TF3
2 ( , )

(2 ) p p

d d
N f


 
 


r p

r p  

 

3
2 [ ( ) ],

(2 )

r p
r  


d d

p p                (12) 

 

Integrating in Eq. (12) over p , one obtains 
 

 
3/2

3/2

TF, 2 2

1 2
[ ( )] ( ) .

3
r r r

 
     

  


m
N d V V  

(13) 
 

Extended Thomas - Fermi approximation 
 

The Thomas - Fermi approximation can be 

extended taking into consideration the corrections up 

to order of 2  in the Kirkwood’s -expansion of 

the distribution function ( , )f r p . The 

corresponding extended Thomas - Fermi (ETF) 

distribution function ETF( , )f r p  reads [13, 14] 
 

2
2

ETF( , ) [ ( ) ] {( ) ( ( ) )
8

r p r r



        

p p
f p p V h

m

 

2 21 1
[( ) ( ) ] ( ( ) )},

3
p r      V V h

m
      (14) 

 

where 2( ) / 2 ( )r r h p m V . Substituting Eq. (14) 

into Eq. (9) and integrating over p , we obtain 
 

ETF, 3
2 ( , ) ,

(2 ) p p

d d
N f


 



r p

r p
ETF

          (15) 

 

   
 

2 2

ETF, TF, 1/2 3/22 2

1 2 ( ) 1 [ ( )]
( ) .

24 4( ) ( )

m V V
N N d V

V V
 

 
     

      


r r
r r

r r


                          (16) 

 

Note that the value N  taken at   F  represents 

the total number of particles in the ground state of 

the Fermi system 
 

eq3
2 ( , ) ( ),

(2 )F Fp p

d d
N f d 

  
 
r p

r p r r     (17) 

 

where Fp is the Fermi momentum and eq ( )r  is the 

particle density in the ground state of the nucleus. 

Using Eqs. (16) and (17), we recover well known 

result for the particle density eq,ETF( )r  in the ETF 

approximation [15] 

   
 

2 2

eq,ETF eq,TF 1/2 3/22 2

1 2 ( ) 1 [ ( )]
( ) ( ) ( ) ,

24 4( ) ( )

r r
r r r

r r

 
        

      


F

F F

m V V
V

V V
               (18) 

 

where 
 

 
3/2

3/2

eq,TF 2 2

1 2
( ) [ ( )] ( ) .

3
r r r

 
       

  
F F

m
V V   

(19) 

The expression (16) can be simplified. Using the 

relation 
 

     

2 2

3/2 1/2 1/2

( )
2 2  

     

  

F

V V V

V V V
      (20) 

 

and the Gauss - Ostrogradsky theorem, we will 

reduce Eq. (16) to the following final result  
 

 
 

2

ETF, TF, 1/22 2

1 2 ( )
( ) .

48 ( )

r
r r

r
 


    

  


m V
N N d V

V

 

 

Effective mass 
 

As already mentioned above, we can use the 

Landau’s quasi-particle conception to derive the 

excitation energy ( )exE T  and thereby the level 

density parameter a , see Eqs. (4) and (5). The 

quasiparticle conception implies that the effective 

mass  m m  of quasi-particle appears in the single 

particle Hamiltonian  2( ) / 2 ( )r
 h r p m V  and the 

mass m  in Eqs. (16) and (20) must be replaced by 

the effective mass m . One of consequence of such 

kind of replacement m m  is that the Fermi 

energy 2 / 2 F Fp m  is shifted up 
 

2 2 2

.
2 2 2




     F F F

F F

p p p

m m m
             (21) 
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(Note that the Fermi-momentum Fp  1/3

0  is 

derived by the nuclear bulk density 0  which does 

not depend on .m ) The commonly used [2] 

parameterization of the shell model mean field ( )rV  

is adopted to the experimental data for the Fermi 

energy (or separation energy) F . Therefore, the 

shift up of the Fermi energy F  in Eq. (21) requires 

the relevant shift of the shell model mean field ( )rV  

to provide the conservation of an initially fixed 

separation-energy. To achieve that the bottom of the 

mean field ( )rV  must be shifted down by factor 

/ m m  and the mean field ( )rV  is modified by the 

effective mass as 
 

( ) ( ) ( ).r r r



 

m
V V V

m
                   (22) 

 

Finally, we obtain from Eq. (20) 
 

1/2

ETF, TF, 2 2

1 2

48
r



 

 
   

  


m
N N d  

 

2

1/2

( )
( ) .

( )

V
V

V







     

   

r
r

r
        (23) 

 

Below, we will restrict ourselves to a spherical mean 

field ( )V r  and rewrite Eqs. (23) and (24) as 

3/2 1/2
2

3/2 2

ETF, 1/22 2 2 20

( )1 2 1 2 ( ) 2 ( )
[ ( )] ( )

3 12 ( )
r

   


 




                                   
 

V rm m V r V r
N d V r V r dr r

r r rV r
 

(24) 
 

Note that the nucleon effective mass m  is, in 

general, r-dependent ( ) m m r  and includes two 

contributions caused by the non-locality of the 

nucleon-nucleon interaction (momentum-dependent 

effective mass ( )

km r ) and the correlation correction 

(frequency dependent effective mass ( )

m r ) [8, 16].  
 

Continuum effect 

on the single-particle level density 
 

For a finite depth potential ( )V r  the single-

particle level density ( )g  includes both the bound-

states and the continuum-state contributions. The 

numerical calculations of the level density ( )g  

requires the high accuracy to prevent a spurious 

contribution to the excitation energy exE  of Eq. (5). 

Such kind of spurious contribution is caused by the 

free space states which are not related to the 

potential well ( )V r . The corresponding free-space 

number of particles free,N is created by the free-

space states 32 / (2 )r p d d  and it is given by [8] 
 

3/2

3/2

free, 2 2

1 2
( )

3
r





 
    

  


m
N d .           (25) 

 

The number of states Eq. (20) should be then 

corrected by subtracting of the contribution free( )g . 

The final result reads 
 

 
3/2

2 3/2 3/2

ETF, 2

4 2
[ ( )] ( ) ( )

3

m
N dr r V r V r


 



 
                

  

 

1/2
2

2

1/22 20

( )1 2 2
( ) ( ) .

12 ( )

V rm
dr r V r V r

r r rV r




 



            
        
                                (26) 

 

Note that the procedure of subtracting of the free-

state contribution free,N  from the continuum states 

agrees with the results of phase-shift analysis of the 

single-particle levels in continuum (resonance 

states), see Refs. [8, 17]. In particular, the 

subtraction of the free-state contribution free,N  

provides the fulfillment of the Levinson's theorem 

[18] which establishes the relation between the 

phase shift at zero energy and the number of bound 

states. 

 

Single particle level density 
 

Evaluating the single particle density ( )g , we 

will apply our consideration to two potentials ( )V r : 

(i) Trapezoidal (TR) potential well TR ( )V r  and (ii) 

Woods - Saxon (WS) potential  WS( )V r . 
 

Trapezoidal potential well 
 

We will adopt the following form of trapezoidal 

mean field 
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 
0

0TR
(1/ 2) 1 ( ) /( ) ,

0

 


      
  

V r R D

V r R D R D r R DV r

r R D

(27) 

where 

0 354 33 MeV


  
N Z

V t
A

 

 

1/30
01/3

2
, 1.12 1.0 fm,

1 ( / )

R
R R A

D R
   
  

 

 

, 0.7 fm.D d d    
 

Here, 3 1t  for a neutron and -1 for a proton. Using 

the trapezoidal potential (27) and the Thomas - 

Fermi approximation, the single particle density 

TF( )g  can be evaluated analytically. The final 

result reads, see also Ref. [8], 
 

3/2

1/2 2 3

TF 02 2

1 2 8 16
( ) ( ) 1 2 ,

2 5 35

m
g V x x x


   

            

(28) 

where 

0

0

2 ( )
.

( )





 
 



D V
x

R D V
 

 

The free-gas level density free( )g  is derived by 

Eqs. (25) and (11) 
 

3/2

free 2 2

1 2
( )

2

m
g

 
   

  
 

 

3
1/2 2 34 ( ) 8 16

1 2 ,
3 5 35

R D
y y y

   
     

 
      (29) 

where 

0

2
.

( ) 


 



D
y

R D V
 

 

In Fig. 1 we show the neutron single-particle 

level density for the nucleus 208 Pb  obtained from 

Eqs. (28) and (29). The dashed lines are obtained 

using equations (28) and (29) for the infinite 

trapezoidal potential, and the solid lines are for the 

finite-depth trapezoidal potential of Eq. (27). The 

lines 1 and 2 are for different values of diffuseness 

parameter 0.7 fmd  and 0.1fm.d  

As one can see from Fig. 1, the subtraction of 
the continuum states reduces significantly the 
single-particle level density for 0  . Note also 
that, due to the finite size of the nuclear potential 
well, one has for the continuum region 0   that 

( )g  decreases with increasing  . That means that  

 
 

Fig. 1. The neutron single-particle level density for 

nucleus 208 Pb  for the trapezoidal potential assuming 

m m  . The lines 1 and 2 are for different values of 

diffuseness parameter 0.7 fmd   and 0.1fm.d   The 

dashed lines are for the infinite trapezoidal well. 
 

a proper treatment of the continuum is important for 

determining nuclear properties such as the level 

density of hot nuclei and the exciton level density at 

high excitation energy. The results of Fig. 1 show 

also that the reduction of the diffuseness parameter 

d  of surface layer changes the behavior of level 

density ( )g , which is 2( )  g  (oscillator-like) 

for a smooth surface (curve 1 in Fig. 1) to 

( )  g  (square well-like) for a sharp surface 

(curve 2 in Fig. 1). 

The 2 -corrections and the corresponding ETF 

values of the level density ( )g  and the number of 

particles N  of can be evaluated using Eqs. (11), 

(26) and (27). For the 2 -correction corr,N  to the 

number of particles one obtains 
 

1/2

10
corr, 1/22

1

( )2
,

12 ( )

 



 

        
      


R D

R D

V rV m
N dr r

D V r
 

(30) 

where  1 0( ) 1 ( ) / / 2.   V r V r R D  

In Fig. 2 we have plotted the number of particles 

N  embedded in trapezoidal potential with energy 

below   evaluated within the Thomas - Fermi 

approximation in comparison with the 2 -correc-

tion corr,N  which is provided by the ETF approxi-

mation of Eq. (30). As one can see the 2 -correc-

tion corr,N  is negative and negligible small, i.e., the 

corrections due to the ETF approximation play the 

minor role. Following this result, we will below 

restrict ourselves to the Thomas - Fermi approxi-

mation only. 
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Fig. 2. Number of particles N
 within Thomas - Fermi 

approximation (solid line) and 2 -correction 
,N corr

 

(dashed line) for the trapezoidal potential for the nucleus 
208 Pb  with .m m   

Fig. 3. The neutron level density ( )ng  for the nucleus 

208 Pb  within the Thomas - Fermi approximation. The 

dashed line is for m m   and the solid line is for 

0.8 .m m    

 

Woods - Saxon potential 
 

We will use the Woods - Saxon potential in the 

following form 

 

WS 0 3

0

1
( ) 33 .

1 exp[( ) / ]

 
     

N Z
V r V t

A r R d
 

(31) 

We will adopt the following parameters 
1/3

0 0 058 MeV, ,  V R r A  0 1.12 fmr  and 

0.5 fmd  [2]. The mean field of protons includes 

also the Coulomb potential 
 

2
2

2

1
3 ( )

2

( ),

C

C C
C

C

Ze r
r R

R R
V

Ze
r R

r

   
    
     





         (32) 

 

where 2 1.44 MeV fm e , 1/3C CR r A  and 

1.24 fm.Cr    

Using the results of previous sections, we have 

evaluated the single-particle level density for the WS 

potential. Fig. 3 shows the TF result for the neutron 

level density ( )ng  for the nucleus 208 Pb  with 

effective mass  m m  (dashed line) and 

0.8 m m  (solid line). 

Note that the effective mass  m m  affects 

significantly the slope of curve ( )ng  for the 

bound states with energy 0e . This fact plies an 

important role for the calculations of the excitation 

energy and the entropy of the heated nuclei, see 

next Section. 

Nuclear excitation energy 

and statistical level density parameter 
 

Assuming the Landau's conception of Fermi-gas 

of quasiparticles, we will apply Eq. (5) to evaluate 

the nuclear excitation energy .exE  The Landau's 

conception of quasiparticles requires that the 

integrand ( ) ( ) ( , )     f g n T  in Eq. (5) should 

be localized near the Fermi energy .F  In Fig. 4 we 

have plotted the integrand ( )f  for the nucleus 
208 Pb  for two temperatures 1 MeVT  and 

3 MeVT . 
 

 
Fig. 4. The integrand ( ) ( ) ( , )nf g n T       in Eq. (5) 

for the neutron excitation energy exE  for the nucleus 

208 Pb  for two temperatures 1MeVT   and 3 MeVT  . 
 

As can be seen from Fig. 4, the integrand ( )f  

of Eq. (5) is localized near the Fermi energy 

( 8.37 MeV  F  for 208 Pb  in Fig. 4) quite well 

even for the relatively high temperature 3 MeVT . 

This fact confirms the Landau’s conception of 

quasiparticles and allows one to use Eq. (5) to 
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evaluate the nuclear excitation energy. Note also that 

for high temperatures (e.g., 3 MeVT  in Fig. 4) 

the integrand ( )f  in Eq. (5) penetrates into the 

region of continuum states 0e  and the continuum 

effect on the single-particle level density (see 

previous Section) has to be taken into consideration. 

In Table we show the results of calculations of 

the Fermi energy ,F q , the level density parameters 

qa  ( q n  for neutron and q p  for proton) and 

the inverse parameter / ( ) n pK A a a  for three 

spherical nuclei 40Ca , 48Ca  and 208 Pb . All results 

were obtained wthin the Thomas - Fermi approxima-

tion: TF with  m m  and *TF  with 0.7 m m . 
 

The results of calculation of the Fermi energy 
F q,
 , the statistical density parameter 

q
a and the inverse density 

parameter K  for different nuclei. The calculations were performed within the Thomas - Fermi (TF) 

approximation with Woods - Saxon potential  
 

Nuclei 
,F n  

TF   

,F p  

TF   

na  

*TF  

pa  

TF  

K  

TF  

,F n  

TF 

,F p  

TF 

na  

TF  

pa  

TF  

K  

TF  

40Ca  -17.25 -5.49 3.04 3.03 6.59 -12.08 - 3.85 4.36 3.40 5.15 
48Ca  -7.68 -17.62 5.14 2.77 6.07 -5.38 -12.34 7.05 3.96 4.36 
208Pb  -6.95 -8.39 5.92 8.74 8.43 - 4.87 -5.88 20.78 11.99 6.34 

 


 Means that the effective mass 0.7m m   was used. 
 

Fig. 5 shows the comparison of the experimental 

data (solid points) and the evaluated values of 

inverse parameter K  within the TF approximation 

with Woods - Saxon potential. 
 

 
Fig. 5. Experimental values of K  for even-even nuclei 

(solid points) from Ref. [5]. The solid lines are for the TF 

calculations with Woods - Saxon potential in two cases 

m m   and 0.7 .m m   The dashed lines are for the 3D 

oscillator potential and the infinite-depth square potential 

well, see above ( )HO Fg   and ( ).SQ Fg   

 

The results of Fig. 5 demonstrate a quite 

satisfactory description of average behavior of the 

A-dependency of the statistical level-density 

parameter K  obtained within the Thomas - Fermi 

approximation by use of the realistic Woods - Saxon 

potential. Two aspects are important for such kind of 

description: (i) the energy dependency of single 

particle level density ( )g , in particular, the slope 

of curve ( )g  in vicinity of the Fermi energy 

;F    (ii) the effective mass of nucleon  q qm m  

which reflects the Landau's conception of the Fermi 

gas of quasiparticles. 

The continuum states in single-particle level 

density ( )g  do not affect significantly the 

thermodynamic calculations of the nuclear excitation 

energy exE  and the statistical level density 

parameter K  for sufficiently small temperatures  

1T  MeV. However, the procedure of the correct 

subtracting of the free-state contribution from the 

continuum states plies an important role for high 

temperatures. The influence of the continuum 

correction to the single-particle level density on the 

nuclear caloric curve ( )exE T  is shown in Fig. 6. 
 

 
Fig. 6. The caloric curve of nucleus 208 Pb . The dashed 

line is without of subtracting of the free-state contribution  

free,N   (see Eq. (25)) from the continuum states and the 

solid line is where continuum states were corrected in 

agreement with Eq. (26).  
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As seen from Fig. 6, the subtracting of the free-

state contribution free,N  from the continuum states 

reduces significantly the result for the excitation 

energy exE  (solid line) in the case of high enough 

temperatures. Note also that the correct description 

of continuum states can be important in the case of 

nuclei beyond the stability line where the Fermi 

energy is located close to the edge of potential well. 
 

Summary and conclusion 
 

In present paper, we have applied the standard 

thermodynamic derivation of the statistical level 

density ( ) exE  and the statistical level density 

parameter K  to the finite nuclei. The key element 

of such kind of approach is the excitation energy 

exE  of a nucleus. In general, the calculations of the 

excitation energy exE  of strong interacting system 

like a nucleus is extremely complicate problem. A 

significant progress is here achieved by use of the 

Landau's conception of quasiparticles where the 

excitation energy exE  is derived similarly to a 

noninteracting Fermi-gas and depends thereby on 

the single-particle level density ( )g  . 

Using the Wigner distribution function in phase 

space ( , ),f r p  we have presented the semiclassical 

derivation of the single-particle level density ( )g . 

Two approximations, namely Thomas - Fermi (TF) 

and Extended Thomas - Fermi (ETF), have been 

analyzed. Evaluating the number of particles N  

embedded in potential well ( )rV  with energy below 

 , we have shown that the 2 -corrections to 

N caused by the ETF approximation play a minor 

role and we have restricted our consideration by the 

Thomas - Fermi approximation only. 

Applying the Landau’s conception of 

quasiparticles, we have introduced the nucleon 

effective mass  m m . It was shown that the 

effective mass  m m  affects significantly the 

slope of curve ( )g  for the bound states with 

energy 0e  in vicinity of the Fermi energy ,F    

see Fig. 3. This fact plies an important role for the 

calculations of the nuclear excitation energy exE  and 

the statistical level density parameter .K  

Considering the realistic finite-depth potentials 

( ),V r  we have paid a special attention to the 

accuracy of derivation of the level density ( )g  for 

the continuum states to prevent a spurious 

contribution to the excitation energy exE  which is 

caused by free space states and which is not related 

to the potential well ( ).V r  Our numerical 

calculations for the Woods - Saxon potential show 

that the correct subtracting of the free-state 

contribution from the continuum states reduces 

significantly the result for the excitation energy exE  

in the case of high enough temperatures, see Fig. 6. 

The numerical calculations of the inverse level 

density parameter K  have been performed for the 

Woods - Saxon potential well. We have used a 

standard parameterization of WS potential without 

the adjustable parameters. We have shown (see 

Fig. 5) that the Thomas - Fermi approximation with 

the effective mass of nucleon 0.7 m m  provides a 

quite satisfactory description of average A -depen-

dency of the statistical level density parameter K . 
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СТАТИСТИЧНА ГУСТИНА ЗБУДЖЕНИХ СТАНІВ ЯДЕР 
 

Квазікласичне наближення застосовано до розрахунку одночастинкової та статистичної густини збуджених 

станів ядер. Використано концепцію Ландау про ефективну масу нуклона m m  . Даний підхід забезпечує 

коректний опис внеску рівнів суцільного спектра в реалістичних ядерних потенціалах скінченої глибини. 

Показано, що стани суцільного спектра не впливають суттєво на термодинамічні розрахунки при достатньо 

малих температурах 1 MeВ,T   але значно змінюють результати при високих температурах. Використовуючи 

стандартний потенціал Вудса - Саксона та ефективну масу нуклонів 0,7m m  , обрахована залежність статис-

тичного параметрf густини рівнів K  від числа нуклонів A , яка добре узгоджується із експериментальними 

даними.  

Ключові слова: густина рівнів, збуджені ядра, ядерна температура, ефективна маса нуклона, суцільний 

спектр рівнів. 
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СТАТИСТИЧЕСКАЯ ПЛОТНОСТЬ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ЯДЕР 
 

Квазиклассическое приближение использовано для расчета одночастичной и статистической плотности 

возбужденных состояний ядер. Использована концепция Ландау эффективной массы нуклона m m  . Данный 

подход обеспечивает корректное описание вклада уровней сплошного спектра для реалистических ядерных 

потенциалов конечной глубины. Показано, что состояния сплошного спектра не влияют существенно на 

термодинамические расчеты при достаточно малых температурах 1 MэВ,T   но значительно меняют 

результаты при высоких температурах. С использованием стандартного потенциала Вудса - Саксона и 

эффективной массы нуклона 0,7m m   вычислена зависимость статистического параметра плотности уровней 

K  от числа нуклонов A , которая находится в хорошем согласии с экспериментальными данными. 

Ключевые слова: плотность уровней, возбужденные ядра, ядерная температура, эффективная масса нуклона, 

сплошной спектр уровней. 
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