ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
2 keV filters of quasi-mono-energetic neutrons
M. Adib1, N. Habib1, I. I. Bashter2, M. Fathallah3, M. S. El-Mesiry1, A. Saleh2
1Reactor Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
2Faculty of Science, Zagazig University, Egypt
3Faculty of Science, Jazan University, Kingdom of Saudi Arabia
Abstract: A simulation study for the production of 2 keV filters of quasi-mono-energetic neutrons based on the deep interference minima in the 45Sc total cross-section was carried out. A computer code QMENF-II was adapted to calculate the optimum amounts of the 45Sc as a main filter element and additional component ones to obtain sufficient intensity at high resolution and purity of the filtered quasi-mono-energetic neutrons. The emitted neutron spectrum from nuclear reactor and from the reaction of 2.6 MeV protons on a lithium fluoride target at the accelerator beam port, are used for simulation.
Keywords: 2 keV quasi-mono-energetic neutron beams, 45Sc neutron filters.
References:1. Gritzay O., Kolotyi V., Psheniehnyi V. et al. Neutron filter technique and its use for fundamental and applied investigations. 6th Conf. on Nuclear and Particle Physics. NUPPAC'07 (Luxor, Egypt, 2007).
2. Moreh R., Block R. C., Danon Y. Generating a multi-line neutron beam using an electron Linac and a U-filter. Nucl. Instrum. Methods Phys. Res. A 562 (2006) 401. https://doi.org/10.1016/j.nima.2006.02.160
3. Nascimento F., Ramos A. R., Fernandes A.C. et al. Optimization of filtered neutron beams for the calibration of superheated droplet detectors at the RPI. Nucl. Instrum. Methods Phys. Res. A 580 (2001) 282. https://doi.org/10.1016/j.nima.2007.05.156
4. Tan H. V., Hai C. N., Son N. P., Anh T. T. Neutron Capture Cross Section Measurements of 109Ag, 186W and 185Gd on Filtered Neutron Beams of 55 and 144 keV. IAEA, INDC (VN)-011 (2004).
5. Viaggi M., Dagresa M. A., Longhino J. et al. Boron neutron capture therapy for undifferentiated thyroid, carcinoma: preliminary results with the combined use of BPA and BOPP. J. Appl. Rad. Isot. 61 (2004) 905. https://doi.org/10.1016/j.apradiso.2004.05.005
6. Bisceglie E., Colangelo P., Colonna N. et al. On the optimal energy of epithermal neutron beams for BNCT. J. Phys. Med. Biol. 45 (2000) 49. https://doi.org/10.1088/0031-9155/45/1/304
7. Gelsomina De Stasio et al. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neurological Research 27 (2005) 387. https://doi.org/10.1179/016164105x17206
8. Suzuki M., Sakurai Y., Hgiwara S. et al. First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma. Japanese Journal of Clinical Oncology 37 (2007) 376. https://doi.org/10.1093/jjco/hym039
9. Morcos N. H., Adib M. 2 keV filters of quasi-monochromatic epithermal neutrons. Journal of Nuclear and Radiation Physics 6 (2011) 69.
10. Morcos N. H., Naguib K. Production of Optimal Epithermal Neutron Beams for BNCT. Sop transactions on applied physics. (In press, 2014).
11. Morcos N. H., Naguib K. QMENF- G: A computer package for quasi-mono-energetic neutron filters. Ann. Nucl. Energy 40 (2012) 237. https://doi.org/10.1016/j.anucene.2011.09.020
12. Cullen D. E. PREPRO-2010 (2010 ENDF/B PreProcessing codes). IAEA-NDS-39, Rev. 14 (October 31, 2010).
13. Minsky D., Kreiner A., Valda A. AB-BNCT beam shaping assembly based on 7Li (p, n)7Be reaction optimization. J. Appl. Rad. Isot. 69 (2011) 1668. https://doi.org/10.1016/j.apradiso.2011.02.047