ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Elastic and inelastic scattering of 15N ions by 11B at 84 MeV
A. T. Rudchik1, O. V. Herashchenko1, K. A. Chercas1, A. A. Rudchik1, S. Kliczewski2, Val. M. Pirnak1, E. Piasecki3, K. Rusek3, A. Trczińska3, S. B. Sakuta4, R. Siudak2, I. Strojek5, A. Stolarz3, E. I. Koshchy6, A. O. Barabash1, A. P. Ilyin1, O. A. Ponkratenko1, Yu. M. Stepanenko1, V. V. Uleshchenko1, Yu. O. Shyrma1, J. Choiński3, A. Szczurek2
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
3Heavy Ion Laboratory, Warsaw University, Warsaw, Poland
4National Research Centre "Kurchatov Institute" Moscow, Russia
5National Centre for Nuclear Research, Warsaw, Poland
6 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
Abstract: Angular distributions of the 11B + 15N elastic and inelastic scattering were measured at Elab (15N) = 84 MeV. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, reorientations of 11B and 15N in ground and excited states as well as the important one- and two-step transfer reactions were included in the channels-coupling-scheme. The 11B + 15N optical potential parameters as well as deformation parameters of these nuclei were deduced. The contributions of one- and two-step transfers in the 11B + 15N elastic and inelastic scattering channels were estimated.
Keywords: heavy-ion scattering, optical model, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.
References:1. Piasecki E., Antczak M., Devine J. et al. Project ICARE at HIL. Annual Report 2006 (Warsaw University, Heavy Ion Laboratory, Warsaw, 2007) 38 p.
2. Liu M., Von Oertzen W., Jacmart J. C. et al. Investigation of one-nucleon transfer reactions between complex nuclei at incident energies between 3 MeV/nucleon and 8 MeV/nucleon. Nucl. Phys. A 165 (1971) 118. https://doi.org/10.1016/0375-9474(71)90152-7
3. Rudchik A. T., Budzanowski A., Chernievsky V. K. et al. The 11B + 12C elastic and inelastic scattering at Elab(11B) = 49 MeV and energy dependence of the 11B + 12C interaction. Nucl. Phys. A 695 (2001) 51. https://doi.org/10.1016/S0375-9474(01)01106-X
4. Rudchik A. T., Kyryanchuk V. M., Budzanowski A. et al. Mechanism of large angle enhancement of the 9Be + 11B scattering. Nucl. Phys. A 714 (2003) 391. https://doi.org/10.1016/S0375-9474(02)01391-X
5. Smirnov Yu. F., Tchuvil'sky Yu. M. Cluster spectroscopic factors for the p-shell nuclei. Phys. Rev. C 15 (1977) 84. https://doi.org/10.1103/PhysRevC.15.84
6. Rudchik A. T., Chuvil'skij Yu. M. Calculation of spectroscopic amplitudes for arbitrary associations of nucleons in 1p-shell nuclei (program DESNA). Preprint of the Institute for Nucl. Res. AS USSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus).
7. Rudchik A. T., Chuvil'skij Yu. M. Ukr. Fiz. Zh. 30 (1985) 819 (Rus).
8. Boyarkina A. N. The structure of the 1p-shell nuclei (Moscow: Izd-vo Moskovskogo Universiteta, 1973) 62 p. (Rus).
9. Nilsson B. S. SPI-GENOA: an Optical Model Search Code. Report (The Niels Bohr Institute, 1976).
10. Thompson I. J. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167. https://doi.org/10.1016/0167-7977(88)90005-6
11. Cook J. DFPOT - A program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125. https://doi.org/10.1016/0010-4655(82)90029-7
12. De Vries H., De Jager C. W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1