Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2014, volume 15, issue 2, pages 178-188.
Section: Radiobiology and Radioecology.
Received: 22.05.2014; Published online: 30.06.2014.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2014.02.178

Radioprotective effects of melanin-glucan complex from Fomes Fomentarius and indralin at irradiation of mice BALB/C by dose of 5.95 Gy/8.5 min

O. F. Seniuk1, V. O. Kovalev1, L. A. Palamar1, N. I. Krul2, L. F. Gorovoj2, V. M. Shevel3

1Institute for Safety Problems of NPP, National Academy of Sciences of Ukraine, Chornobyl, Ukraine
2Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute for Nuclear Research, National Academy of Sciences of Ukraine

Abstract: Protective effect of melanin-glucan complex from F. fomentarius (MGC) and Russian armed forces radioprotector indralin in the model of acute exposure by dose of 5.95 Gy / 8.5 min care is compared. Obtained results indicate availability at MGC and indralin both direct and indirect "bystander effect" of DNA-protective properties, as well as severe anxiolytic activity. Thus for indralin protection factor was 0.33 when in MGC it was 2.3 times higher (0.75).

Keywords: ionizing radiation, acute exposure, protection coefficient, DNA single-strand breaks, mushroom biopolymers, indralin, "bystander effect", behavioral responses.

References:

1. Bebeshko V. G., Bazyka D. A. Radioprotectors as Means to Minimize the Consequences of the Chernobyl Disaster. Health Effects of the Chernobyl Accident (Kyiv: Dia, 2007) 800 p. (Ukr).

2. Military Toxicology, Radiobiology and Medical Protection: Textbook Ed. by prof. S. A. Kutsenko (St-Peterburg: Foliant, 2004) 528 p. (Rus).

3. Legeza V. I., Grebenyuk A. N., Butomo N. I. et al. Medical Devices Anti-Radiation Protection (St-Peterburg: Lan', 2001) 95 p. (Rus).

4. Legeza V. I., Grebenyuk A. N., Zatsepin V. A. Radiats. Biologiya. Radioekol. 51 (2011) 70 (Rus).

5. Grebenyuk A. N., Legeza V. I., Nazarov V. B. et al. Medical Means of Preventing and Therapy of Radiation Damage (St-Peterburg: Foliant, 2011) 92 p. (Rus).

6. Bergonie J., Tribondeau L. De quelques resultats de la radiotherapie et essai de fixation d’une technique rationnelle. Comptes Rendus des Seances de l’Academie des Sciences 143 (1906) 983.

7. Loganovsky K., Yuriyev K. EEG Patterns in Persons Exposed to Ionizing Radiation as a Result of the Chernobyl Accident. J. Neuropsychiatry Clin. Neurosci. 13 (2001) 441. https://doi.org/10.1176/jnp.13.4.441

8. Lyasko L. I., Tsyb A. F., Diyakova A. M. et al. The alteration of higher physical functions and the contents of oligopeptides in Chernobyl NPP accident recovery workers in the long term post-accident period. Int. J. of Radiation Medicine 7 (2005) 89.

9. Loganovsky K. N., Loganovskaja T. K. Schizophrenia spectrum disorders in personsexposed to ionizing radiation as a result of the Chernobyl accident. Schizophrenia Bulletin 26 (2000) 751. https://doi.org/10.1093/oxfordjournals.schbul.a033492

10. Lyakh S. P. Microbial Melaninogenez and Its Functions (Moscow: Nauka, 1981) 274 p. (Rus).

11. Babitskaya V. G., Shcherba V. V., Filimonova T. V. et al. Prikladnaya Biokhimiya i Mikrobiologiya 36 (2000) 153 (Rus).

12. Babitskaya V. G., Shcherba V. V. Prikladnaya Biokhimiya i Mikrobiologiya 38 (2002) 286 (Rus).

13. Zherebin Yu. L., Sava V. M., Bogatskij A. V. Zhurn. Obshch. Khimii 51 (1981) 2767 (Rus).

14. Hill H. The function of melanin or six blind people examine an elephant. BioEssays 14 (1992) 49. https://doi.org/https://doi.org/10.1002/bies.950140111

15. Korzhova L. P., Frolova E. V., Romakov Yu. A et al. Biokhimiya 54 (1989) 992 (Rus).

16. Tsubina M. G. Byulleten' MOIP 66 (1961) 114 (Rus).

17. Loskutova Z. F. Vivarium (Moscow: Meditsina, 1986) 93 p. (Rus).

18. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scan. J. Clin. Lab. Invest. 21 (1968) 77.

19. Kravchenko L. P., Petrenko A. Yu., Fuller B. A. A simple non-enzymatic method for the isolation of high yield of functional rat hepatocytes. Cell Biology International 26 (2002) 1003. https://doi.org/10.1006/cbir.2002.0951

20. Oxidative Stress: Oxidants and Antioxidants Ed. by H. Sies (N.Y.: Academic, 1991) 546 p.

21. Bradley M. O., Kohn K. W. Fluid Mechanisms of DNA Double-Strand Filter Elution. Biophysical Journal 82 (2002) 19. https://doi.org/10.1016/S0006-3495(02)75370-8

22. Shikazono N., Noguchi M., Fujii K. et al. The Yield, Processing, and Biological Consequences of Clustered DNA Damage Induced by Ionizing Radiation. J. Radiat. Res. 50 (2009) 27. https://doi.org/10.1269/jrr.08086

23. Mendorff-Dreikorn K. El., Chauvin Ch., Slor H. et al. Assessment of DNA damage and repair in human peripheral blood mononuclear cells using a novel DNA unwinding technique. Cellular and Molecular Biology 45 (1999) 211.

24. Rorgers J., Shepherd J. K. Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacol. 113 (1993) 237. https://doi.org/https://doi.org/10.1007/bf02245704

25. Agular R., Gil L., Flint J. et al. Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F2 intercross of Roman rat strains. Brain Res. Bull. 57 (2002) 17. https://doi.org/10.1016/S0361-9230(01)00632-3

26. Pauwells R, Balzarini J., Baba M. et al. Rapid and automated tetrazolium-based colorimetric assay for detection of anti-HIV compounds. J. Virol. Meth. 20 (1988) 309. https://doi.org/10.1016/0166-0934(88)90134-6

27. Hudson L., Hay F. C. Practical Immunology (Oxford, London: Blackwell Scientific Publications, 1989) 507 p.

28. Techniques in HIV Research. Ed. by A. Aldovini, B. Walker (New York: Stockton Press, 1990) 40 - 46; 87 - 91. https://doi.org/10.1007/978-1-349-11888-5

29. Kravtsova O. Yu., Voronina T. A., Sariev A. K. Eksperim. i Klin. Farmakologiya 67 (2004) 8 (Rus).

30. Rodgers R. J., Cole J. C. Anxiety enhancement in the murine elevated plus maze by immediate prior exposure to social stressors. Physiol. Behav. 53 (1993) 383. https://doi.org/https://doi.org/10.1016/0031-9384(93)90222-2

31. Van-der-Varden B. L., Bartel L. Mathematical Statistics (Moscow: Izd-vo Inostr. Lit., 1960) 436 p. (Rus).

32. Senyuk O. F., Myshkovskij N. M., Ivchenko V. G. et al. Problemy Chornobylya 14 (2004) 151 (Rus).

33. Gavrylenko N. V., Kukulyanskaya T. A., Novykov D. A. et al. Proc. of BGU (Minsk, 1997) 234 (Rus).

34. Halliwell B., Aruoma O. I. DNA and Free Radicals (L.: Horwood, 1993) 284 p.

35. Blaisdell J. O., Harrison L., Wallace S. S. Base excision repair processing of radiation-induced clustered DNA lesions. Radiat. Prot. Dosimentry 97 (2001) 25. https://doi.org/https://doi.org/10.1093/oxfordjournals.rpd.a006634

36. Hill H. Z., Huselton C., Pilas B. Ability of Melanins to Protect Against the Radiolysis of Thymine and Thymidine. Pigment. Cell Res. 1 (1987) 81. https://doi.org/10.1111/j.1600-0749.1987.tb00394.x

37. Von Sonntag C. Free-Radical-induced DNA Damage and its Repair (Heidelberg: Springer. Verlag, 2006) 465 p. https://doi.org/10.1007/3-540-30592-0

38. Ward J. F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Prog. Nucleic Acid Res. Mol. Biol. 35 (1988) 95. https://doi.org/10.1016/S0079-6603(08)60611-X

39. Pfeiffer P., Gottlich, B., Reichenberger S. et al. DNA Lesions and Repair. Mut. Res. Rev. Gen. Tox. 366 (1996) 69. https://doi.org/10.1016/S0165-1110(96)90029-9

40. Little M. P., Wakeford R. The Bystander Effect in C3H 10T1⁄2 Cells and Radon-Induced Lung Cancer. Radiat. Res. 15 (2001) 695. https://doi.org/https://doi.org/10.1667/0033-7587(2001)156[0695:tbeicc]2.0.co;2

41. Mothersill C., Seymour C. Radiation-Induced Bystander Effects: Past History and Future Directions. Radiat. Res. 155 (2001) 759. https://doi.org/10.1667/0033-7587(2001)155[0759:RIBEPH]2.0.CO;2

42. Senyuk O. F., Gorovoj L. F., Kurchenko V. P. et al. Genome protection properties of melanin-containing complexes from higher basidiomycetes. Curent Problems of Radiation Research. Ed. by D. Grodzinsky, A. Dmitriev (Kyiv, 2007) p. 224.

43. Senyuk O. F., Gorovoj V. P., Kovalev V. A. et al. Radiats. Biol. Radioekol. 53 (2013) 170 (Rus). https://doi.org/http://dx.doi.org/10.7868/S0869803113010128

44. Rodgers R. J., Cole J. C. Anxiety enhancement in the murine elevated plus maze by immediate prior exposure to social stressors. Physiol. Behav. 53 (1993) 383. https://doi.org/https://doi.org/10.1016/0031-9384(93)90222-2