Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2014, volume 15, issue 2, pages 148-153.
Section: Radiation Physics.
Received: 06.02.2014; Published online: 30.06.2014.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2014.02.148

Charge carrier mobility in the configuration restructuring divacancies in silicon

A. P. Dolgolenko1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Temperature dependence of the mobility of electrons and holes in p-Si, cultivated by Czochralski method and non-crucible zone melting, after irradiation by fast reactor neutrons was considered. In the framework of the elaborated model of clusters defects the temperature dependence of the concentration of electrons and holes in silicon samples was described. It is shown that the configuration change divacancies in clusters of defects and in conducting matrix leads to increase in the height of the drift barriers and concentration longwave phonons in conducting matrix samples of silicon.

Keywords: silicon, fast neutrons, divacancy, carrier mobility.

References:

1. Moliver S.S. Open shell method for electronic structure of silicon divacancy. Fizika Tverdogo Tela 41 (1999) 404 (Rus).

2. Dolgolenko A. P. Electronic configurations of the levels of divacancies in silicon. Voprosy Atomnoj Nauki i Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie 5 (2012) 13 (Rus).

3. Dolgolenko A. P. Electronic configurations of the levels of divacancies in germanium. Voprosy Atomnoj Nauki i Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie 5 (2013) 37 (Rus).

4. Dolgolenko A. P. Variation of Carrier Removal Rate with Irradiation Dose in Fast-Pile Neutron Irradiated n-Si. Phys. Stat. Sol. (a) 179 (2000) 179. https://doi.org/10.1002/1521-396X(200005)179:1%3C179::AID-PSSA179%3E3.0.CO;2-3

5. Dolgolenko A. P., Litovchenko P. G., Varentsov M. D. et al. Particularities of the formation of radiation defects in silicon with low and high concentration of oxygen. Phys. Stat. Sol. (b) 243 (2006) 1842. http://doi.org/10.1002/pssb.200541074

6. Shik A. Ya. Pis'ma ZhETF 20 (1974) 14 (Rus).

7. Dolgolenko A. P., Fishchuk I. I. A-Centres Build-up Kinetics in the Conductive Matrix of Pulled n-Type Silicon with Calculation of Their Recharges at Defect Clusters. Phys. Stat. Sol. (a) 67 (1981) 407. https://doi.org/10.1002/pssa.2210670207

8. Dolgolenko A. P., Gajdar G. P., Varentsov M. D., Litovchenko P. G. The radiation hardness of n- and p-Si, doped by oxygen and germanium, under the irradiation by high-energy nuclear particles. Voprosy Atomnoj Nauki i Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie 2 (2009) 151 (Rus).

9. Dolgolenko A. P. Kinetic coefficients in n-type silicon, irradiated by reactor fast neutrons. Voprosy Atomnoj Nauki i Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie 4 (2011) 14. (Rus)

10. Shpinar L. I., Yaskovets I. I. Fizika Tverdogo Tela 26 (1984) 1725 (Rus).

11. Herring Conyers. Effect of Random Inhomogeities on Electrical and Galvanomagnetic Measurements. J. Appl. Phys. 31 (1960) 1939. https://doi.org/10.1063/1.1735477