Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2014, volume 15, issue 1, pages 73-81.
Section: Radiobiology and Radioecology.
Received: 10.02.2014; Published online: 30.03.2014.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2014.01.073

Radioprotective influence on mice DNA of biopolymer complexes from tinder Fomes Fomentarius under ionizing radiation in small doses

O. F. Seniuk1, V. O. Kovalev1, L. A. Palamar1, M. I. Krul1, L. F. Gorovoj2

1Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The effects of similar doses of the values of common external irradiation (0.19 Gy/4 hours and 0.24 Gy/6 months) at single-strand DNA breaks and the level of the hydrogen bonds in this molecule in different cell types (lymphocytes, hepatocytes and splenocytes) linear mice CC57W/mv are discussed. Mice were exposed to γ-fields produced by "hot" particles of emergency 4-th Chernobyl Unit containing the same radionuclides in the proportions. The possibility of leveling the radiation effects using complex biopolymers from Fomes Fomentarius was shown. The ability of melanin-glucan complex to directly counteract the fragmentation of DNA in a model system with lambda phage this macromolecule oxidation products of benzidine and neutralize mutagenic effect in Salmonella typhimurium strains in the classical Ames test was studied

Keywords: ionizing radiation, acute and chronic effects, DNA, fungal biopolymers.

References:

1. Sies H. Oxidative Stress: Oxidants and Antioxidants (N.Y: Academic, 1991) 546 p.

2. Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and reparability. Prog. Nucleic Acid Res. Mol. Biol. 35 (1988) 95. 10.1016/s0079-6603(08)60611-x

3. Pfeiffer P., Gottlich B., Reichenberger S. et al. DNA Lesions and Repair. Mut. Res. Rev. Gen. Tox. 366 (1996) 69. https://doi.org/10.1016/S0165-1110(96)90029-9

4. Prise K. M., Ahnström G., Belli M. et al. A review of DSB induction data for varying quality radiations. Int. J. Radiat. Biol. 74 (1998) 173. https://doi.org/10.1080/095530098141564

5. Sachs R. K., Brenner D. J., Hahnfeldt P. J., Hlatkys L. R. A formalism for analyzing large-scale clustering of radiation-induced breaks along chromosomes. Int. J. Radiat. Biol. 74 (1998) 185. https://doi.org/10.1080/095530098141573

6. Newman H. C., Praise K. M., Folkard M., Michael B. D. DNA double-strand break distributions in X-ray and λ-particle irradiated V79 cells: evidence for nonrandom breakage. Int. J. Radiat. Biol. 71 (1997) 347. 10.1080/095530097143978

7. Dikomey E., Dahm-Daphi J., Brammer I. et al. Correlation between cellular radiosensitivity and nonrepaired double-strand breaks studied in nine mammalian cell lines. Int. J. Radiat. Biol. 73 (1998) 269. https://doi.org/10.1080/095530098142365

8. Zhydkov O. V. Electronic processes in irradiated dielectrics and compositions properties comprising nuclear fuel: Thesis. Institute for Condensed Matter Physics of the NAS of Ukraine (Lviv, Ukraine, 2007) (Rus).

9. Kovalev V. A., Senyuk O. F. Ekologicheskij Vestnik 5 (2008) 36 (Rus).

10. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scan. J. Clin. Lab. Invest. 21 (1968) 77. https://doi.org/10.1063/1.3034933

11. Kravchenko L. P., Petrenko A. Yu., Fuller B. A. A simple non-enzymatic method for the isolation of high yield of functional rat hepatocytes. Cell Biology International 26 (2002) 1003. https://doi.org/10.1006/cbir.2002.0951

12. Mendorff-Dreikorn K. El., Chauvin Ch., Slor H. et al. Assessment of DNA damage and repair in human peripheral blood mononuclear cells using a novel DNA unwinding technique. Cellular and Molecular Biology 45 (1999) 211.

13. Bradford M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248. https://doi.org/10.1016/0003-2697(76)90527-3

14. Gorovoj L. F., Kosyakov V. N. Patent RF ¹ 2073015, MPK Ñ08Â37/08 (1991) (Rus).

15. Osterman L. A. Methods of Proteins and Nucleic Acids Study: Electrophoresis and Ultracentrifugation (Moscow: Nauka, 1981) 260 p. (Rus).

16. Mortelmans K., Zeiger E. The Ames Salmonella/microsome mutagenicity test. Mutat. Res. 455 (2000) 29. https://doi.org/10.1016/S0027-5107(00)00064-6

17. Andreev S. G. Stochastic and structural-temporal effects in physics of biological action of radiation: Thesis abstract (Moscow, MEPI, 1981) 16 p. (Rus).

18. Blagoj Yu. P., Kornilova S. V., Leont'ev V. S. et al. Biofizika 39 (1994) 637 (Rus).

19. Burlakova E. B., Mikhajlov V. F., Mazurik V. K. Radiats. Biol. i Radioekol. 41 (2001) 489 (Rus).

20. Krawitt E. L. Autoimmune Hepatitis. The New England Journal of Medicine 334 (1996) 897. https://doi.org/10.1056/NEJMra050408

21. Kovalev V., Krul' N., Zhezhera V., Senyuk O. Autoimmune hepatitis as a result of chronic irradiation by the small doses of radiation. Nauk. V³sn. Uzhgorod. Univ. Ser. B³olog³ya 27 (2010) 245 (Rus).

22. Maniatis T., Frich E., Sembruk Dzh. Molecular Cloning (Moscow: Mir, 1984) 479 p. (Rus).

23. Sejts I. F., Knyazev P. G. Molecular Oncology (Leningrad: Meditsina, 1986) 399 p. (Rus).