Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2014, volume 15, issue 1, pages 59-65.
Section: Radiation Physics.
Received: 25.12.2013; Published online: 30.03.2014.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2014.01.059

Determination of the structure factor of interparticle interactions in the ferrofluid by small-angle neutron scattering

A. V. Nagornyi1,2, L. A. Bulavin1,3, V. I. Petrenko1,2, O. I. Ivankov1,2, O. V. Tomchuk1,2, M. V. Avdeev2, L. Vékás4

1Taras Shevchenko National University, Kyiv, Ukraine
2Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
3Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Center for Fundamental and Advanced Technical Research, Romanian Academy of Sciences, Timisoara, Romania

Abstract: Results of the structure and interparticle interaction investigations of polar magnetic fluid with different content of magnetite, which are obtained by small-angle neutron scattering (SANS) are presented in the work. The experiment was performed on small-angle scattering spectrometer YuMO at the Pulsed Reactor IBR-2 in the Joint Institute for Nuclear Research (Dubna, Russia). Polar ferrofluid magnetite/oleic and dodecyl-benzenesulfonic acid/isobutanol was considered. It is shown that the experimental SANS curves are well described by form-factor for polydisperse spherical particles only for ferrofluids with magnetite concentration of about 0.5 vol. %. Significant effect of structural factors on the SANS spectra was observed for respectively large concentrations of magnetic material in the volume of ferrofluid. Aggregation of magnetic particles and the molecules of the stabilizer do not occur in the considered concentration range of magnetic material. Experimentally obtained dependences of the effective structure factor as well as the comparison with the theoretical curve calculated for the hard sphere potential in polydisperse approximation are presented in the work.

Keywords: magnetic fluid, ferrofluid, small angle neutron scattering, structure factor, the interparticle interaction.

References:

1. Berkovski B. Magnetic Fluids and Applications Handbook (N.-Y.: Beggel House Inc., 1996) p. 350. https://www.begellhouse.com/books/magnetic-fluids-and-applications-handbook.html

2. Iwamoto Y., Yamaguchi H., Niu X.-D. Magnetically-driven heat transport device using a binary temperature-sensitive magnetic fluid. J. Mag. Mag. Mater 323 (2011) 1378. https://doi.org/10.1016/j.jmmm.2010.11.050

3. Proceedings of the 11-th Int. Conf. on Magnetic Fluids, Ed. by P. Kopcansky, M. Timko, J. Kovac, M. Vaclavikova, S. Odenbach. J. of Physics: Condenced Matter 20 (2008) 200301. https://doi.org/10.1088/0953-8984/20/20/204112

4. Johannsen M., Thiesen B., Wust P., Jordan A. Int. J. Hyperthermia 26 (2010) 790. https://doi.org/10.3109/02656731003745740

5. Jordan A., Scholz R., Maier-Hauff K. et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Mag. Mag. Mater. 225 (2001) 118. https://doi.org/10.1016/S0304-8853(00)01239-7

6. Avdeev M. V., Aksenov V. L. Small-angle neutron scattering in structure research of magnetic fluids. Usp. Fiz. Nauk 180 (2010) 1009 (Rus).

7. Petrenko V. I., Avdeev M. V., Aksenov V. L. et al. Magnetic fluids with excess of a surfactant according to the data of small-angle neutron scattering. J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 3 (2009) 161.

8. Fertman V. E. Magnetic Fluids (Minsk: Vyshejshaya shkola, 1988) 184 p. (Rus).

9. Avdeev M. V., Aksenov V. L., Balasoiu M. et al. Comparative analysis of the structure of sterically stabilized ferrofluids on polar carriers by small-angle neutron scattering. J. Coll. Interf. Sc. 295 (2006) 100. https://doi.org/10.1016/j.jcis.2005.07.048

10. Ostanevich Y. M. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. Macromol. Chem., Macromol. Symp. 15 (1988) 91.

11. Kuklin A. I., Islamov A. Kh., Kovalev Yu. S. et al. Poverkhnost 6 (2006) 73 (Rus).

12. Kuklin A., Rogov A., Gorshkova Y. et al. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: Experimental and computer-modeling studies. Physics of Particles and Nuclei Letters 8 (2011) 119. https://doi.org/10.1134/S1547477111020075

13. Pedersen J. S. Analysis of small angle scattering data from colloids. Adv. Coll. Interf. Sc. 70 (1997) 171. https://doi.org/10.1016/S0001-8686(97)00312-6

14. Svergun D. I., Fejgin L. A. X-ray and Neutron Small-angle Scattering (Moscow: Nauka, 1986) 280 p. (Rus).

15. Avdeev M. V., Balasoiu M., Aksenov V. L. et al. On the magnetic structure of magnetite/oleic acid/benzene ferrofluids by small-angle neutron scattering. J. Magn. Magn. Mater 270 (2004) 371. https://doi.org/10.1016/j.jmmm.2003.08.032

16. Nagornyj A. V., Bulavin L. A., Petrenko V. I. et al. Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58 (2013) 735 (Ukr).

17. Gazeau F., Boue F., Dubois E., Perzynski R. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions. J. Phys. Condens. Matter 15 (2003) S1305. https://doi.org/10.1088/0953-8984/15/15/302

18. Petrenko V. I., Aksenov V. L., Avdeev M. V. et al. Analysis of the structure of aqueous ferrofluids by the small-angle neutron scattering method. Physics of the Solid State 52 (2010) 974. https://doi.org/10.1134/S1063783410050185

19. Petrenko V. I., Avdeev M. V., Garamus V. M. et al. Micelle formation in aqueous solutions of dodecylbenzene sulfonic acid studied by small-angle neutron scattering. Colloids Surf. A 369 (2010) 160. https://doi.org/10.1016/j.colsurfa.2010.08.023

20. Frenkel D., Vos R. J., de Kruif C. G., Vrij A. Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus - Yevick theory. J. Chem. Phys. 84 (1986) 4625. https://doi.org/10.1063/1.449987