ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Isotopic dependence in nuclear-nuclear interaction potential and fusion cross-section
V. O. Nesterov1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Fusion cross-sections and interaction potentials for 58Ni, 64Ni and different tin isotopes were obtained within the semi microscopic framework. The coupling to 2+ and 3- states in the interacting nuclei has been taken into account in the fusion cross-sections calculation. Good agreement with experimental data and isotopic dependences of nucleon densities, interaction potentials and fusion cross-sections were founded.
Keywords: nuclear, nuclear-nuclear interaction potential, isotopic dependence, fusion cross-section.
References:1. R. Bass. Nuclear Reactions with Heavy Ions (Berlin, Heidelberg, Springer-Verlag, 1980) 410 p. https://link.springer.com/book/9783540096115
2. Satchler G.R. Direct nuclear reactions (Oxford, Clarendon Press, 1983) 833 p. Google books
3. Frobrich P., Lipperheide R. Theory of nuclear reactions (Oxford, Clarendon Press, 1996) 467 p. Book
4. Blocki J., Randrup J., Swiatecki W. J. et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4
5. Myers W. D., Swiatecki W. J. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62 (2000) 044610. https://doi.org/10.1103/PhysRevC.62.044610
6. Krappe H. J., Nix J. R., Sierk A. J. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992
7. Winther A. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. https://doi.org/10.1016/0375-9474(95)00374-A
8. Denisov V. Yu. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1
9. Rudchik A.T., Kanishchev V. Yu., Rudchik À. À. et al. Elastic and inelastic scattering of 12C ions by 7Li at 115 MeV. Nucl. Phys. At. Energy. 14 (2013) 25. https://jnpae.kinr.kyiv.ua/14.1/Articles_PDF/jnpae-2013-14-0025-Rudchik.pdf
10. Brack M., Guet C., Hakanson H.-B. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
11. Brack M., Bhaduri R. K. Semiclassical physics (Addison Wesley Publ. Co, 1997) 484 p. https://doi.org/10.1201/9780429502828
12. Denisov V. Yu., Nesterov V. A. Binding energies of nuclei and their density distributions in a nonlocal extended Thomas-Fermi approximation. Phys. At. Nucl. 65 (2002) 814. https://doi.org/10.1134/1.1481472
13. Denisov V. Yu., Nesterov V. A. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. At. Nucl. 69 (2006) 1472. https://doi.org/10.1134/S1063778806090067
14. Denisov V. Yu., Plyujko V. A. Problems of nuclear physics and nuclear reactions (Kyiv: VPTs "Kyivskyj Un³versytet", 2013) 432 p. (Rus). https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/091/45091761.pdf
15. Strutinskij V. M., Tyapin A. S. Quasistatic Drop Model of the Nucleus as an Approximation to the Statistical Model. ZhETF 45 (1964) 960 (Rus). http://www.jetp.ras.ru/cgi-bin/r/index/e/18/3/p664?a=list
16. Strutinsky V. M., Magner A. G., Denisov V. Yu. Density distributions in nuclei. Z. Phys. 322 (1985) 149. https://doi.org/10.1007/BF01412028
17. Blocki J. P., Magner A. G., Ring P. Vlasenko A. A. Nuclear asymmetry energy and isovector stiffness within the effective surface approximation. Phys. Rev. C 87 (2013) 044304. https://doi.org/10.1103/PhysRevC.87.044304
18. Magner A. G., Sanzhur A. I., Gzhebinsky A. M. Asymmetry and Spin-Orbit Effects in Binding Energy in the Effective Nuclear Surface Approximation. Int. J. Mod. Phys. E 18 (2009) 885. https://doi.org/10.1142/S0218301309013002
19. Hagino K., Rowley N., Kruppa A. T. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comp. Phys. Comm. 123 (1999) 143. https://doi.org/10.1016/S0010-4655(99)00243-X
20. Negele J. W. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54 (1982) 913. https://doi.org/10.1103/RevModPhys.54.913
21. Dobaczewski J., Flocard H., Treiner J. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422 (1984) 103. https://doi.org/10.1016/0375-9474(84)90433-0
22. De Vries H., De Jager C. W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tabl. 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1
23. Raman S., Nestor C. W., Tikkanen P. Transition probability from the ground state to the first excited 2+ state of even-even nuclides. At. Data. Nucl. Data Tabl. 78 (2001) 1. https://doi.org/10.1002/bate.200100590
24. Kibedi T., Spear R. H. Reduced electric-octupole transition probabilities, B(E3; 01+ → 31-) - An update. At. Data. Nucl. Data Tabl. 80 (2002) 35. https://doi.org/10.1006/adnd.2001.0871
25. Bhattacharyya P., Daly P. J., Zhang C. T. et al. Magic Nucleus 132Sn and Its One-Neutron-Hole Neighbor 131Sn. Phys. Rev. Lett. 87 (2001) 062502. https://doi.org/10.1103/PhysRevLett.87.062502
26. Tsunoda Y., Otsuka T., Shimizu N. et al. Study of nuclei around Z = 28 by large-scale shell model calculations. J. of Phys.: Conf. Ser. 445 (2013) 012028. https://doi.org/10.1088/1742-6596/445/1/012028
27. Liang J. F., Shapira I. D., Gross C. J. et al. Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132Sn on 64Ni. Phys. Rev. Lett. 91 (2003) 152701. https://doi.org/10.1103/PhysRevLett.91.152701
28. Liang J. F., Shapira I. D., Gross C. J. et al. Fusion of radioactive 132Sn with 64Ni at sub-barrier energies. Phys. Rev. C 78 (2008) 047601. https://doi.org/10.1103/PhysRevC.78.047601