Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2014, volume 15, issue 1, pages 7-19.
Section: Nuclear Physics.
Received: 03.12.2013; Published online: 30.03.2014.
PDF Full text (en)
https://doi.org/10.15407/jnpae2014.01.007

To the nature of 0+ states in 228Th studied by two-neutron transfer

A. I. Levon1, P. Alexa2, S. Pascu3, V. A. Onischuk1, P. G. Thirolf4

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv
2Institute of Physics and Clean Technologies, Technical University of Ostrava, Czech Republic
3H. Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
4Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany

Abstract: Sequences of states observed in the 230Th(p, t)228Th reaction are selected which can be treated as rotational bands and as multiplets of excitations. Moments of inertia have been derived from these sequences, whose values may be considered as evidence of the two-phonon nature of most 0+ excitations. Experimental data are compared with interacting boson model and quasiparticle-phonon model calculations and with experimental data for 229Pa. Conclusions have been made concerning the nature of 0+ states in 228Th.

Keywords: 0+ states, collective bands, moments of inertia, nuclear models.

References:

1. Maher J.V., Erskine J.R., Friedman A.M. et al. Population of 0+ States in Actinide and A ≈ 190 Nuclides by the (p, t) Reaction. Phys. Rev. C 5 (1972) 1380. https://doi.org/10.1103/PhysRevC.5.1380

2. Dalmasso J., Maria H., Ardisson G. 228Th Nuclear States Fed in 228Ac Decay. Phys. Rev. C 36 (1987) 2510. https://doi.org/10.1103/PhysRevC.36.2510

3. Levon A.I., Graw G., Hertenberger R. et al. Investigation of 0+ states in 228Th via two-neutron transfer: Experimental data. Nucl. Phys. At. Energy. 14 (2013) 321. https://jnpae.kinr.kyiv.ua/14.4/Articles_Pdf/jnpae-2013-14-0321-Levon.pdf

4. Weber T., de Boer J., Freitag K. et al. Nuclear Levels in 228Th Populated in the Decay of 228Pa (II). Eur. Phys. J. A 3 (1998) 25. https://doi.org/10.1007/s100500050146

5. Burke D.G., Maddaock B.L.W., Davidson W.F. Two Quasineutron States in 168Er Populated by the 67Er(d, p) and 167Er(t, d) Reactions. Nucl. Phys. A 442 (1985) 424. https://doi.org/10.1016/S0375-9474(85)80025-7

6. Levon A.I., Graw G., Eisermann Y. et al. Spectroscopy of 230Th in the (p,t) reaction. Phys. Rev. C 79 (2009) 014318. https://doi.org/10.1103/PhysRevC.79.014318

7. Engel J., Iachello F. Interacting Boson Model of Collective Octupole States (I). The Rotational Limit. Nucl. Phys. A 472 (1987) 61. https://doi.org/10.1016/0375-9474(87)90220-X

8. Zamfir N.V., Kusnezov D. Octupole correlations in the transitional actinides and the spdf interacting boson model. Phys. Rev. C 63 (2001) 054306. https://doi.org/10.1103/PhysRevC.63.054306

9. Zamfir N.V., Kusnezov D. Octupole correlations in U and Pu nuclei. Phys. Rev. C 67 (2003) 014305. https://doi.org/10.1103/PhysRevC.67.014305

10. Wirth H.-F., Graw G., Christen S. et al. 0+ states in deformed actinide nuclei by the (p,t) reaction. Phys. Rev. C 69 (2004) 044310. https://doi.org/10.1103/PhysRevC.69.044310

11. Pascu S., Zamfir N.V., Cäta-Danil Gh., Marginean N. Structural evolution of the Z=52-62 neutron-deficient nuclei in the interacting boson approximation framework. Phys. Rev. C 81 (2010) 054321. https://doi.org/10.1103/PhysRevC.81.054321

12. Kusnezov D. The U(16) algebraic lattice. J. Phys. A 22 (1990) 4271. https://doi.org/10.1088/0305-4470/22/20/008

13. Kusnezov D. The U(16) algebraic lattice. II. Analytical construction. J. Phys. A 23 (1990) 5673. https://doi.org/10.1088/0305-4470/23/24/010

14. Iachello F., Arima A. The Interacting Boson Model (Cambridge, England: Cambridge University Press, 1987). https://doi.org/10.1017/CBO9780511895517

15. Pascu S. et al. Unpublished.

16. Kusnezov D. Computer code OCTUPOLE (unpublished).

17. Lo Iudice N., Sushkov A.V., Shirikova N.Yu. Microscopic structure of low-lying 0+ states in the deformed 158Gd. Phys. Rev. C 70 (2004) 064316. https://doi.org/10.1103/PhysRevC.70.064316

18. Lo Iudice N., Sushkov A.V., Shirikova N.Yu. Microscopic structure of low-lying 0+ states in deformed nuclei. Phys. Rev. C 72 (2005) 034303. https://doi.org/10.1142/9789812702265_0055

19. Soloviev V.G. Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol, 1992) 324 p.

20. Sushkov A.V. Private communication.

21. Soloviev V.G. Theory of Complex Nuclei. (Oxford, Pergamon Press, 1976).

22. Møller P., Nix J.R., Myer W.D., Swiatechki W.J. Nuclear Ground-State Masses and Deformations. Atomic Data Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002

23. Møller P., Nix J.R., Kratz K.-L. Nuclear Properties for Astrophysical and Radioactive-Ion-Beam Applications. Atomic Data Nucl. Data Tables 66 (1997) 131. https://doi.org/10.1006/adnd.1997.0746

24. Pyatov N.I. Spin-quadrupole forces and collective states in deformed nuclei. Ark. Phys. 36 (1967) 667.

25. Levon A.I., de Boer J., Graw G. et al. The nuclear structure of 229Pa from the 231Pa(p,t)229Pa and 230Th(p, 2nγ) 229Pa reactions. Nucl. Phys. A 576 (1994) 267. https://doi.org/10.1016/0375-9474(94)90260-7

26. Levon A.I., de Boer J., Loewe M. et al. Experimental evidence on the ground-state energy of 229Pa. Eur. Phys. J. A 2 (1998) 9. https://doi.org/10.1007/s100500050083