Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 4, pages 377-383.
Section: Radiation Physics.
Received: 01.07.2013; Published online: 30.12.2013.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2013.04.377

Modification of radiation defects in Si and Ge by background impurity

A. P. Dolgolenko1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Model of modification of basic levels of the known radiation defects in silicon and germanium is offered. Energy of Hubbard is independent of number of electrons on radiation defect, and its size depends on base-line admixtures near-by vacancy defect. If near-by vacancy defect of the interstitial atom of oxygen is located, then energy of the negatively-charged acceptor defect is reducing on 0.06 eV, and energy of donor rises on the same size. The interstitial atom of silicon and of germanium changes the levels of defect on 0.03 eV. The atom of carbon in the interstitial site changes energy of vacancy defect on 0.035 eV, but in opposite direction. Modification of vacancy defects does not change energy of neutral defect level in the band gap in silicon and germanium.

Keywords: silicon, germanium, fast neutron, divacancy.

References:

1. Watkins G. D., Corbett J. W. Defects in irradiated silicon. I. Electron spin resonance of the Si-A-center. Phys. Rev. 121 (1961) 1001. https://doi.org/10.1103/PhysRev.121.1001

2. Bemski G. Paramagnetic Resonance in Electron Irradiated Silicon. J. Appl. Phys. 30 (1959) 1195. https://doi.org/10.1063/1.1735292

3. Frens A. M. et al. Observation of rapid direct charge transfer between deep defects silicon. Phys. Rev. Lett. 72 (1994) 2939. https://doi.org/10.1103/PhysRevLett.72.2939

4. Makarenko L. F. Do we know the energy levels of radiation defects in silicon? Physica B 308-310 (2001) 465. https://doi.org/10.1016/S0921-4526(01)00739-6

5. Brotherton S. D, Bradley P. Defect production and lifetime control in electron and γ-irradiated silicon. J. Appl. Phys. 53 (1982) 5720. https://doi.org/10.1063/1.331460

6. Моливер С. С. Метод открытой оболочки для электронной структуры дивакансии кремния. ФТТ 41 (1999) 404.

7. Долголенко А. П. Электронные уровни конфигураций дивакансий в кремнии. Вопросы атомной науки и техники. Сер. "Физика радиационных повреждений и радиационное материаловедение" 5 (2012) 13.

8. Емцев В. В., Машовец Т. В., Михнович В. В. Пары Френкеля в германии и кремнии. ФТП 26 (1992) 22.

9. Dolgolenko A. P., Litovchenko P. G., Varentsov M. D. et al. Particularities of the formation of radiation defects in silicon with low and high concentration of oxygen. Phys. Stat. Sol. (b) 243 (2006) 1842. https://doi.org/10.1002/pssb.200541074

10. Watkins G. D., Troxell J. R., Chatterjee A. P. Vacancies and interstitials in silicon. Defects and Radiation Effects in Semiconductors, 1978. Conf. Ser. № 46 (Bristol-London, 1979) p. 16.

11. Trueblood D. L. Electron Paramagnetic Resonance in Electron-Irradiated Germanium. Phys. Rev. 161 (1963) 828. https://doi.org/10.1103/PhysRev.161.828

12. Pecheur P., Kauffer E., Gerl M. Tight-binding study of the lattice vacancy in semiconductors. Defects and Radiation Effects in Semiconductors,1978. Conf. Ser. No 46 (Bristol-London, 1979) p. 174.

13. Mooney P. M., Poulin F., Bourgoin J. C. Annealing of electron-induced defects in n-type germanium. Phys. Rev. B 28 (1983) 3372. https://doi.org/10.1103/PhysRevB.28.3372

14. Haller E. E. Defects in Germanium: New results and novel methods. Int. Conf. on Radiation Physics of Semiconductors and Related Materials, Тбилиси, 1979 (Тбилиси: Изд-во Тбилисского ун-та, 1980) c. 233.

15. Stein H. J. Light-Sensitive Defect Formation by Electron and Neutron Irradiation of n- and p-type Germanium near 80 °K. J. Appl. Phys. 43 (1972) 138. https://doi.org/10.1063/1.1660797

16. Larsen A. N., Bro Hansen A., Mesli A. Irradiation-induced defects in SiGe. Materials Science and Engineering B 154 (2008) 85. https://doi.org/10.1016/j.mseb.2008.08.003

17. Av Skardi H., Bro Hansen A., Mesli A., Larsen A. N. The di-vacancy in particle-irradiated, strain-relaxed SiGe. Nucl. Instr. and Meth. in Phys. Res. B 186 (2002) 195. https://doi.org/10.1016/S0168-583X(01)00893-X

18. Fage-Pedersen J., Larsen A. N., Mesli A. Irradiation-induced defects in Ge studied by transient spectroscopies. Phys. Rev. B 62 (2000) 10116. https://doi.org/10.1103/PhysRevB.62.10116

19. Емцев В. В., Машовец Т. В., Полоскин Д. С. Проявление пар Френкеля в р-германии при низкотемпературном γ-облучении. ФТП 25 (1991) 191.

20. Larsen Arne Nylandsted, Mesli Abdelmadjid. The hidden secrets of the E-center in Si and Ge. Physica B 401-402 (2007) 85. https://doi.org/10.1016/j.physb.2007.08.119

21. Poulin F., Bourgoin J. C. Characteristics of the electron traps produced by electron irradiation in n-type germanium. Phys. Rev. B 26 (1982) 6788. https://doi.org/10.1103/PhysRevB.26.6788

22. Bourgoin J., Corbett J. W. A new mechanism for interstitial migration. Phys. Lett. A 38 (1972) 135. https://doi.org/10.1016/0375-9601(72)90523-3

23. Baraff G. A., Kane E. O., Schluter M. Theory of the silicon vacancy: An Anderson negative-U system. Phys. Rev. B 21 (1980) 5662. https://doi.org/10.1103/PhysRevB.21.5662

24. Hubbard J. Proc. Roy. Soc. A 277 (1964) 237. https://doi.org/10.1098/rspa.1964.0019

25. Моливер С. С. Конфигурационное вибронное смешивание для нейтральной вакансии в кремнии и алмазе. ФТТ 42 (2000) 1590.

26. Watkins G. D. Lattice Vacancies and Interstitials in Silicon. Chinese Journal of Physics 15 (1977) 92.