Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 4, pages 372-376.
Section: Radiation Physics.
Received: 07.10.2013; Published online: 30.12.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.04.372

Small-angle neutron scattering of multiwalled carbon nanotubes in aqueous suspensions in presence of laponite platelets or cetyltrimethylammonium bromide

L. A. Bulavin1, V. S. Savenko1, N. I. Lebovka2, A. I. Kuklin3, D. V. Soloviov3, O. I. Ivankov3

1Department of Molecular Physics, Taras Shevchenko National University, Kyiv, Ukraine
2Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3The Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia

Abstract: The results of small angle neutron scattering (SANS) study of semidiluted 0.1 and 0.3 % wt aqueous suspensions of multiwalled carbon nanotubes (MWCNTs) are reported. The additives of Laponite platelets or cationic surfactant cetyltrimethylammonium bromide (CTAB) were used for enhancing the dispersion ability of MWCNTs. At high values of wave vector q, (1 nm-1 < q < 3.5 nm-1) all samples exhibited behavior characteristic for rigid rods (i.e., q-1 variation of neutron scattering intensity was observed). At low values of q (0.1 nm-1 < q < 0.5 nm-1), the neutron scattering intensity followed the power law q with exponent the α in the range of 1.2 - 2, depending on concentration of the Laponite platelets or CTAB. Addition of Laponite platelets or CTAB allowed improvement of dispersion ability of MWCNTs. The effects were optimal at the certain value of Laponite/MWCNTs ratio X ≈0.5 or CTAB concentration (≈0.2 % wt). SANS also revealed existence of a mesh structure in MWCNT aggregates with characteristic mesh size of ≈7.4 nm and ≈6.3 nm in suspensions with concentration of 0.1 and 0.3 % wt of MWCNTs, respectively.

Keywords: SANS, elastic neutron scattering, nanotubes, Laponite platelets, CTAB.

References:

1. Tomanek D., Enbody R. J. Science and Application of Nanotube (Dordrecht: Kluwer Academic Publisher, 2002) 416 p.

2. Harris P. J. F. Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century (Cambridge: Cambridge University Press, 2001) 294 p. https://doi.org/10.1017/CBO9780511605819

3. Marulanda J. M. Carbon Nanotubes (Vukovar: Tech. Education and Publishing, 2010) 451 p.

4. Brady-Estevez A. S., Nguyen T. H., Gutierrez L., Elimelech M. Impact of Solution Chemistry on Viral Removal by a Single-Walled Carbon Nanotube Filter. Environ. Sci. Technol. 44 (2010) 3773. https://doi.org/10.1016/j.watres.2010.04.023

5. Souier T., Stefancich M., Chiesa M. Characterization of multi-walled carbon nanotubes-polymer nanocomposites by scanning spreading resistance microscopy. Nanotechnology 23 (2012) 405704. https://doi.org/10.1088/0957-4484/23/40/405704

6. Krause B., Mende M., Potschke P., Petzold G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon N. Y. 48 (2010) 2746. https://doi.org/10.1016/j.carbon.2010.04.002

7. Azoubel S., Magdassi S. The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge. Carbon N. Y. 48 (2010) 3346. https://doi.org/10.1016/j.carbon.2010.05.024

8. Hecht D. S., Heintz A. M., Lee R. et al. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22 (2011) 075201. https://doi.org/10.1088/0957-4484/22/7/075201

9. Umeyama T., Tezuka N., FujitaM. et al. Retention of Intrinsic Electronic Properties of Soluble Single-Walled Carbon Nanotubes after a Significant Degree of Sidewall Functionalization by the Bingel Reaction. J. Phys. Chem. C 111 (2007) 9734. https://doi.org/10.1021/jp071604t

10. Loginov M., Lebovka N., Vorobiev E. Laponite assisted dispersion of carbon nanotubes in water. J. Colloid Interface Sci. 365 (2012) 127. https://doi.org/10.1016/j.jcis.2011.09.025

11. Pack S., Kashiwagi T., Stemp D. et al. Segregation of Carbon Nanotubes/Organoclays Rendering Polymer Blends Self-Extinguishing. Macromolecules 42 (2009) 6698. https://doi.org/10.1021/ma900966k

12. Lemaire B. J , Panine P., Gabriel J. C. P., Davidson P. The measurement by SAXS of the nematic order parameter of laponite gels. Europhys. Lett. 59 (2002) 55. https://doi.org/10.1209/epl/i2002-00159-8

13. Fossum J. O. Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays. EGU General Assembly Conference: Abstracts 11 (2009) 13226.

14. Avery R. G., Ramsay J. D. F. Colloidal properties of synthetic hectorite clay dispersions: II. Light and small angle neutron scattering. J. Colloid Interface Sci. 109 (1986) 448. https://doi.org/10.1016/0021-9797(86)90322-X

15. Ruzicka B., Zaccarelli E. A fresh look at the Laponite phase diagram. Soft Matter 7 (2011) 1268. https://doi.org/10.1039/C0SM00590H

16. Ramsay J. D. F., Swanton S. W., Bunce J. Swelling and dispersion of smectite clay colloids: Determination of structure by neutron diffraction and small-angle neutron scattering. J. Chem. Soc. Faraday Trans. 86 (1990) 3919. https://doi.org/10.1039/FT9908603919

17. Tawari S. L., Koch D. L., Cohen C. Electrical Double-Layer Effects on the Brownian Diffusivity and Aggregation Rate of Laponite Clay Particles. J. Colloid Interface Sci. 240 (2001) 54. https://doi.org/10.1006/jcis.2001.7646

18. Hough L. A., Islam M. F., Hammouda B. et al. Heiney Structure of Semidilute Single-Wall Carbon Nanotube Suspensions and Gels. Nano Lett. 6 (2006) 313. https://doi.org/10.1021/nl051871f

19. Wang H., Zhou W., Ho D. L. et al. Dispersing Single-Walled Carbon Nanotubes with Surfactants: A Small Angle Neutron Scattering Study. Nano Lett. 4 (2004) 1789. https://doi.org/10.1021/nl048969z

20. Li F., Li G. Z., Wang H. Q., Xue Q. J. Studies on cetyltrimethylammonium bromide (CTAB) micellar solution and CTAB reversed microemulsion by ESR and 2H NMR. Colloids Surfaces A: Physicochem. Eng. Asp. 127 (1997) 89. https://doi.org/10.1016/S0927-7757(96)03889-7

21. Mandal A. B., Wang L., Brown K., Verrall R. E. Conductance and NMR Studies of Cetyltrimethylammonium Bromide and Chloride Micelles in the Presence of Several Additives. J. Colloid Interface Sci. 161 (1993) 292. https://doi.org/10.1006/jcis.1993.1469