Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 3, pages 259-264.
Section: Nuclear Physics.
Received: 28.05.2013; Published online: 30.09.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.03.259

The bolometric way towards the direct dark matter detection: the EDELWEISS experiment and the EURECA prospect

C. Nones1

1CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette, France

Abstract: Within the current cosmological concordance model, a large fraction of the mass in the universe is made of dark matter. One tool to detect dark matter in the form of WIMP is given by the direct detection. The EDELWEISS experiment, operated in the Frejus laboratory in a low-background environment, uses cryogenic germanium detectors to look for a direct search of WIMP. These detectors are subject to constant improvement with respect to the rejection capabilities against non WIMP interactions. We present here the results of a WIMP search carried out with ten so-called InterDigit detectors, technology that enables a high level of gamma radioactivity rejection within a controlled fiducial volume. A cross-section of 4.4 · 10-8 pb could be excluded for a WIMP mass of 85 GeV. We also report the search for low-energy WIMP-induced nuclear recoils for an exposure of 113 kg · d. The status of the EDELWEISS-III project, which will operate 40 newly-designed FID detectors in an upgraded installation, will be given as well as a short presentation of the EURECA project aiming to a cross-section of 10-10 - 10-11 pb.

Keywords: dark matter, WIMP searches, cryogenic Ge detectors, the EDELWEISS experiment.

References:

1. Bertone G., Hooper D., Silk J. Particle Dark Matter: Evidence, Candidates and Constraints. Phys. Rep. 405 (2005) 279. https://doi.org/10.1016/j.physrep.2004.08.031

2. Lee B., Weinberg S. Cosmological Lower Bound on Heavy-Neutrino Masses. Phys. Rev. Lett. 39 (1977) 165. https://doi.org/10.1103/PhysRevLett.39.165

3. Bottino A. Donato F., Fornengo N., Scopel S. Light Neutralinos and WIMP direct searches. Phys. Rev. D 69 (2004) 037302. https://doi.org/10.1103/PhysRevD.69.037302

4. Website about the EDELWEISS-III experiment: http://edelweiss.in2p3.fr

5. Sanglard V. et al. Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors. Phys. Rev. D 71 (2005) 122002. https://doi.org/10.1103/PhysRevD.71.122002

6. Broniatowski A. et al. A new high-background-rejection dark matter Ge cryogenic detector. Phys. Lett. B 681 (2009) 305. https://doi.org/10.1016/j.physletb.2009.10.036

7. Armengaud E. et al. Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys. Lett. B 702 (2011) 329. https://doi.org/10.1016/j.physletb.2011.07.034

8. Armengaud E. et al. Background studies for the EDELWEISS dark matter experiment. Astropart. Phys. 47 (2013) 1. https://doi.org/10.1016/j.astropartphys.2013.05.004

9. Schmidt B. et al. Muon-induced background in the EDELWEISS dark matter search. Astropart. Phys. 44 (2013) 28. https://doi.org/10.1016/j.astropartphys.2013.01.014

10. Ahmed Z. et al. Search for Weakly Interacting Massive Particles with the First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory. Phys. Rev. Lett. 102 (2009) 011301; https://doi.org/10.1103/PhysRevLett.102.011301

Ahmed Z. et al. Dark matter search results from the CDMS II Experiment. Science 327 (2010) 1619. https://doi.org/10.1126/science.1186112

11. Lebedenko V. N. et al. Results from the first science run of the ZEPLIN-III dark matter search experiment. Phys. Rev. D 80 (2009) 052010. https://doi.org/10.1103/PhysRevD.80.052010

12. Aprile E. et al. First Dark Matter Results from the XENON100 Experiment. Phys. Rev. Lett. 105 (2010) 131302. https://doi.org/10.1103/PhysRevLett.105.131302

13. Roszkowski L., Ruiz de Autri R., Trotta R. Implications for the Constrained MSSM from a new prediction for b → sγ. JHEP 07 (2007) 075. https://doi.org/10.1088/1126-6708/2007/07/075

14. Armengaud E. et al. A search for low-mass WIMP with the EDELWEISS heat-and-ionization detectors. Phys. Rev. D 86 (2012) 051701. https://doi.org/10.1103/PhysRevD.86.051701

15. Aalseth C. E. et al. Search for an Annual Modulation in a p-Type Point Contact Germanium Dark Matter Detector. Phys. Rev. Lett. 107 (2011) 141301. https://doi.org/10.1103/PhysRevLett.107.141301

16. Bernabei R. et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56 (2008) 333; https://doi.org/10.1140/epjc/s10052-008-0662-y

Bernabei R. et al. New results from DAMA/LIBRA. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9

17. Angloher G. et al. Results from 730 kg days of the CRESST-II Dark Matter search. Eur. Phys. J. C 72 (2012) 1971; https://doi.org/10.1140/epjc/s10052-012-1971-8

Brown A. et al. Extending the CRESST-II commissioning run limits to lower masses. Phys. Rev. D 85 (2012) 021301. https://doi.org/10.1103/PhysRevD.85.021301

18. Kraus H. et al. EURECA - the European Future of Dark Matter Searches with Cryogenic Detectors. Nucl. Phys. B 173 (2007) 168. https://doi.org/10.1016/j.nuclphysbps.2007.08.043

19. Angloher G. et al. (The EURECA collaboration). EURECA Conceptual Design Report. Physics of the Dark Universe 3 (2014) 41 (was published after Nones article). https://doi.org/10.1016/j.dark.2014.03.004