Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 3, pages 224-232.
Section: Nuclear Physics.
Received: 23.04.2013; Published online: 30.09.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.03.224

How does the carbon fusion reaction happen in stars?

X. Tang1, B. Bucher1, X. Fang1, M. Notani1, W. P. Tan1, Y. Li1,3, P. Mooney1, H. Esbensen2, C. L. Jiang2, K. E. Rehm2, C. J. Lin3, E. Brown4

1Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN, USA
2Physics Division, Argonne National Laboratory, Argonne, IL, USA
3China Institute of Atomic Energy, Beijing, China
4Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, and the Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan, USA

Abstract: The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as explosions on the surface of neutron stars, white dwarf (type Ia) supernovae, and massive stellar evolution. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12C + 12C fusion cross sections, 2) measurement of the 12C + 12C at deep sub-barrier energies, 3) a new measurement of the 12C (12C , n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

Keywords: 12C + 12C, fusion reaction, stellar evolution.

References:

1. Almqvist E., Kuehner J. A., Bromley D. A. Resonances in 12C on Carbon Reactions. Phys. Rev. Lett. 4 (1960) 515. https://doi.org/10.1103/PhysRevLett.4.515

2. Bromley D. A. Nuclear Molecules. Sci. Am. 239 (1978) 58. https://doi.org/10.1038/scientificamerican1278-58

3. Erb K. A., Bromley D. A. Heavy-Ion Resonances. In: Treatise on Heavy-Ion Science. Ed. by D. A. Bromley Vol. 3 (New York: Plenum Press, 1985) p. 201.

4. Spillane T. et al. 12C + 12C Fusion Reactions near the Gamow Energy. Phys. Rev. Lett. 98 (2007) 122501. https://doi.org/10.1103/PhysRevLett.98.122501

5. Gasques L. R. et al. Implications of low-energy fusion hindrance on stellar burning and nucleosynthesis. Phys. Rev. C 76 (2007) 035802. https://doi.org/10.1103/PhysRevC.76.035802

6. Patterson J. R., Winkler H., Zaidins C. S. Experimental Investigation of the Stellar Nuclear Reaction 12C + 12C at Low Energies. Astrophys. J. 157 (1969) 367. https://doi.org/10.1086/150073

7. Spinka H., Winkler H. Experimental determination of the total reaction cross section of the stellar nuclear reaction 16O + 16O. Nucl. Phys. A 233 (1974) 456. https://doi.org/10.1016/0375-9474(74)90469-2

8. Becker H. W., Kettner K. U., Rolfs C., Trautvetter H. P. The 12C + 12C reaction at sub-coulomb energies (II). Z. Phys. A 303 (1981) 305. https://doi.org/10.1007/BF01421528

9. Caughlan G. R., Fowler W. A. Thermonuclear reaction rates V. At. Data Nucl. Data Tables 40 (1988) 283. https://doi.org/10.1016/0092-640X(88)90009-5

10. Jiang C. L., Rehm K. E., Back B. B., Janssens R. V. F. Expectations for 12C and 16O induced fusion cross sections at energies of astrophysical interest. Phys. Rev. C 75 (2007) 015803. https://doi.org/10.1103/PhysRevC.75.015803

11. Cooper R. L., Steiner A. W., Brown E. F. Possible Resonances in the 12C + 12C Fusion Rate and Superburst Ignition. Astrophys. J. 702 (2009) 660. https://doi.org/10.1088/0004-637X/702/1/660

12. Dayras R. A., Stokstad R. G., Switkowski Z. E., Wieland R. M. Gamma-ray yields from 12C + 13C reactions near and below the coulomb barrier. Nucl. Phys. A 265 (1976) 153. https://doi.org/10.1016/0375-9474(76)90121-4

13. Notani M., Esbensen H., Fang X. et al. Correlation between the 12C + 12C, 12C + 13C, and 13C + 13C fusion cross sections. Phys. Rev. C 85 (1976) 014607. https://doi.org/10.1103/PhysRevC.85.014607

14. Trentalange S., Wu S. C., Osborne J. L., Barnes C. A. Elastic scattering and fusion cross sections of 13C + 13C. Nucl. Phys. A 483 (1988) 406. https://doi.org/10.1016/0375-9474(88)90543-X

15. Kovar D. G. et al. Systematics of carbon- and oxygen-induced fusion on nuclei with 12≤A≤19. Phys. Rev. C 20 (1979) 1305. https://doi.org/10.1103/PhysRevC.20.1305

16. Esbensen H., Tang X., Jiang C. L. Effects of mutual excitations in the fusion of carbon isotopes. Phys. Rev. C 84 (2011) 064613. https://doi.org/10.1103/PhysRevC.84.064613

17. Zickefoose J. 12C + 12C Fusion: Measurement and Advances Toward the Gamow Energy. Ph.D. thesis (University of Connecticut, 2010).

18. Imanishi B. Resonance energies and partial widths of quasimolecular states formed by the two carbon nuclei. Phys. Lett. B 27 (1968) 267. https://doi.org/10.1016/0370-2693(68)90094-4

19. Lighthall J. C. et al. Commissioning of the HELIOS Spectrometer. Nucl. Instr. and Meth. in Phys. Res. A 622 (2010) 97. https://doi.org/10.1016/j.nima.2010.06.220

20. Jiang C. L., Rehm K. E., Fang X. et al. Measurements of fusion cross-sections in 12C+12C at low beam energies using a particle-γ coincidence technique. Nucl. Instr. Meth. A 682 (2012) 12. https://doi.org/10.1016/j.nima.2012.03.051

21. Koning A. J., Hilaire S., Duijvestijn M. C. TALYS-1.0. Proc. of the Int. Conf. on Nuclear Data for Science and Technology. Ed. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (Nice, France, 2007) p. 211.

22. Pignatari M., Hirschi R., Wiescher M. et al. The 12C + 12C recation and the impact on nucleosynthesis in massive stars. Astrophys. J. 762 (2013) 31. https://doi.org/10.1088/0004-637X/762/1/31

23. Dayras R., Switkowski Z. E., Woosley S.E. Neutron branching in the reaction 12C + 12C. Nucl. Phys. A 279 (1977) 70. https://doi.org/10.1016/0375-9474(77)90421-3

24. Herman M., Capote R., Carlson B. V. et al. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets 108 (2007) 2655. https://doi.org/10.1016/j.nds.2007.11.003