Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 3, pages 217-223.
Section: Nuclear Physics.
Received: 23.04.2013; Published online: 30.09.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.03.217

Superheavy element research at the velocity filter SHIP

S. Heinz1,2

1GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
2II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany

Abstract: The Separator for Heavy Ion Reaction Products (SHIP) is a velocity filter located at the UNILAC accelerator of GSI Darmstadt, Germany. For about 35 years a broad experimental program in the field of superheavy element research is running at SHIP. During the last years particularly investigations in the region of the heaviest known nuclei were performed. In fusion reactions of 48Ca + 248Cm → 296116* a total of six decay chains was observed which could be attributed to the evaporation residues 292116 and 293116. In this experiment, data measured previously on the same isotopes in Dubna were well confirmed. Besides, two attempts were made to synthesize isotopes of the still unobserved element Z = 120 in reactions of 64Ni + 238U and 54Cr + 248Cm. No events were observed in these experiments leading to one-event cross-section limits of 90 and 560 fb, respectively. For future superheavy element research, a new superconducting continuous wave LINAC is planned at GSI which shall deliver beam intensities of up to 1014 particles per second. In this context we are developing a next generation separator and new detection techniques.

Keywords: fusion reaction, superheavy elements, Z = 116, Z = 120.

References:

1. Münzenberg G., Hofmann S., Heßberger F.P. et al. Z. Phys. A 300 (1981) 107. https://doi.org/10.1007/BF01412623

2. Münzenberg G., Armbruster P., Heßberger F.P. et al. Z. Phys. A 309 (1982) 89. https://doi.org/10.1007/BF01420157

3. Münzenberg G., Armbruster P., Folger H. et al. Z. Phys. A 317 (1984) 235. https://doi.org/10.1007/BF01421260

4. Hofmann S., Ninov V., Heßberger F.P. et al. Z. Phys. A 350 (1995) 277. https://doi.org/10.1007/BF01291181

5. Hofmann S., Ninov V., Heßberger F.P. et al. Z. Phys. A 350 (1995) 281. https://doi.org/10.1007/BF01291182

6. Hofmann S., Ninov V., Heßberger F.P. et al. Z. Phys. A 354 (1996) 229. https://doi.org/10.1007/BF02769517

7. Subotic K., Oganessian Y.T., Utyonkov V.K. et al. Nucl. Instr. Meth. A 481 (2002) 71. https://doi.org/10.1016/S0168-9002(01)01367-5

8. Oganessian Yu. J. Phys. G 34 (2007) R165. https://doi.org/10.1088/0954-3899/34/4/R01

9. Morita K., et al. J. Phys. Soc. Jpn. 73 (2004) 2593. https://doi.org/10.1143/JPSJ.73.1371

10. Yeremin A. V., Bogdanov D. D., Chepigin V. I. et al. Nucl. Instr. Meth. B 126 (1997) 329. https://doi.org/10.1016/S0168-583X(96)01002-6

11. Heinz S., Hofmann S., Comas V. et al. Eur. Phys. Jour. A 48 (2012) 32. https://doi.org/10.1140/epja/i2012-12032-7

12. Münzenberg G., Faust W., Hofmann S. et al. Nucl. Instr. Meth. 161 (1979) 65. https://doi.org/10.1016/0029-554X(79)90362-8

13. Hofmann S., Faust W., Münzenberg G. et al. Z. Phys. A 291 (1979) 53. https://doi.org/10.1007/BF01220502

14. Saro S., Janik R., Hofmann S. et al. Nucl. Instr. Meth. 381 (1996) 520. https://doi.org/10.1016/S0168-9002(96)00651-1

15. Hofmann S., Münzenberg G. Rev. Mod. Phys. 72 (2000) 733. https://doi.org/10.1103/RevModPhys.72.733

16. Hofmann S., Heinz S., Mann R. et al. Eur. Phys. Jour. A 48 (2012) 62. https://doi.org/10.1140/epja/i2012-12062-1

17. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. Phys. Rev. C 63 (2000) 011301. https://doi.org/10.1103/PhysRevC.63.011301

18. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. Phys. Rev. C 70 (2004) 064609. https://doi.org/10.1103/PhysRevC.70.064609

19. Zagrebaev V. I. Nucl. Phys. A 734 (2004) 164. https://doi.org/10.1016/j.nuclphysa.2004.01.025

20. Düllmann Ch. E., Schädel M., Yakushev A. et al. Phys. Rev. Lett. 104 (2010) 252701. https://doi.org/10.1103/PhysRevLett.104.252701

21. Cwiok S., Nazarewicz W., Heenen P. H. Phys. Rev. Lett. 83 (1999) 1108. https://doi.org/10.1103/PhysRevLett.83.1108

22. Zagrebaev V., Greiner W. Phys. Rev. C 78 (2008) 34610. https://doi.org/10.1103/PhysRevC.78.034610

23. Nasirov A. K., Giardina G., Mandaglio G. et al. Phys. Rev. C 79 (2009) 024606. https://doi.org/10.1103/PhysRevC.79.024606

24. Adamian G. G., Antonenko N. V., Scheid W. Eur. Phys. Jour. A 41 (2009) 235. https://doi.org/10.1140/epja/i2009-10795-4

25. Hofmann S., Ackermann D., Antalic S. et al. GSI Sci. Rep. 2008 (2009) p. 131.

26. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. Phys. Rev. C 79 (2009) 024603. https://doi.org/10.1103/PhysRevC.79.024603

27. Hofmann S., Heinz S., Ackermann D. et al. Sci. Rep. 2011 (2012) p. 205.

28. Bender M., Nazarewicz W., Reinhard P. G. Phys. Lett. 515 (2001) 42. https://doi.org/10.1016/S0370-2693(01)00863-2

29. Mickat S., Amberg M., Aulenbacher K. et al. The SC CW-LINAC-Demonstrator - SRF technology finds the way to GSI. Proc. of the SRF Conference 2011 (Chicago, 2011).

30. Adamian G. G., Antonenko N. V., Zubov A. S. Phys. Rev. C 71 (2005) 034603. https://doi.org/10.1103/PhysRevC.71.034603

31. Dendoven P., Purushothaman S., Gloos K. Nucl. Instr. Meth. A 558 (2006) 580. https://doi.org/10.1016/j.nima.2005.12.201

32. Purushothaman S., Dendooven P., Moore I. et al. Nucl. Instr. Meth. B 266 (2008) 4488. https://doi.org/10.1016/j.nimb.2008.05.096

33. Plaß W. R., Dickel T., Czok U. et al. Nucl. Instr. Meth. B 266 (2008) 4560. https://doi.org/10.1016/j.nimb.2008.05.079

34. Egelhof P., Kraft-Bermuth S. Topics in Applied Physics 99 (2005) 469. https://doi.org/10.1007/10933596_11