Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 2, pages 199-204.
Section: Engineering and Methods of Experiment.
Received: 30.04.2013; Published online: 30.06.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.02.199

Data analysis of the internal background measurements of 40Ca100MoO4 scintillation crystals

N. D. Khanbekov1, V. V. Alenkov2, A. A. Burenkov1, O. A. Buzanov2, V. N. Kornoukhov1

1Institute for Theoretical and Experimental Physics, Moscow, Russia
2JSC Fomos-Materials, Moscow, Russia

Abstract: The sensitivity of neutrinoless double beta (0ν2β) decay experiments is mainly dependent on the internal background of a detector which, in its turn, is defined by the purity of material and possibility for selection of background events. The AMoRE (Advanced Mo based Rare process Experiment) collaboration plans to use 40Ca100MoO4 scintillation crystals as a detector for search of 0ν2β decay of 100Mo isotope. A purpose of this paper is further investigation of internal background of 40Ca100MoO4 scintillation elements with a low background setup at YangYang underground laboratory. We present new approaches for selection of background events from analyzing data and the latest updated values of background index of 40Ca100MoO4 crystals as a result of the new technique application.

Keywords: neutrinoless double beta decay, data analysis, scintillators, calcium molybdate, low-background physics, time-amplitude analysis, radioactive background.

References:

1. Araki T. et al. Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion. Phys. Rev. Lett. 94 (2005) 081801. https://doi.org/10.1103/PhysRevLett.94.081801

2. Klapdor-Kleingrothaus H. V., Dietz A., Harney H. L., Krivosheina I. V. Evidence for neutrinoless double beta decay. Modern Physics Letters A 16 (2001) 2409. https://doi.org/10.1142/S0217732301005825

3. Schonert S., Abt I., Altmann M. et al. The GERmanium Detector Array (Gerda) for the search of neutrinoless ββ decays of 76Ge at LNGS. Progress in Particle and Nuclear Physics 57 (2006) 241. https://doi.org/10.1016/j.ppnp.2005.12.006

4. Ackerman N. et al. Observation of Two-Neutrino Double-Beta Decay in 136Xe with the EXO-200 Detector. Phys. Rev. Lett. 107 (2011) 212501. https://doi.org/10.1103/PhysRevLett.107.212501

5. Gando A. et al. Limits on Majoron-emitting double-β decays of 136Xe in the KamLAND-Zen experiment. Phys. Rev. C 86 (2012) 021601. https://doi.org/10.1103/PhysRevC.86.021601

6. Annenkov A. N. et al. Development of CaMoO4 crystal scintillators for a double beta decay experiment with 100Mo. Nucl. Instrum. Methods A 584 (2008) 334. https://doi.org/10.1016/j.nima.2007.10.038

7. Belogurov S. G. et al. CaMoO4 scintillation crystal for the search of 100Mo double beta decay. IEEE Trans. Nucl. Sci. 52 (2005) 1131. https://doi.org/10.1109/NSSMIC.2004.1462083

8. Bhang H. et al. AMoRE experiment: a search for neutrinoless double beta decay of 100Mo isotope with 40Ca100MoO4 cryogenic scintillation detector. J. Phys.: Conf. Ser. 375 (2012) 042023. https://doi.org/10.1088/1742-6596/375/1/042023

9. So J. H. et al. Scintillation Properties and Internal Background Study of 40Ca100MoO4 Crystal Scintillators for Neutrino-Less Double Beta Decay Search. IEEE Trans. Nucl. Sci. 59 (2012) 2214. https://doi.org/10.1109/TNS.2012.2200908

10. Danevich F. A., Tretyak V. I. et al. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C 68 (2003) 035501. https://doi.org/10.1103/PhysRevC.68.035501

11. Electrochemical plant. http://www.ecp.ru

12. FSUE Electrochimpribor. http://www.ehp-atom.ru

13. Barabanov I. R., Buzanov O. A., Veresnikova A. V. et al. Content of radioactive isotopes in the original materials and ready-made scintillation СаМоО4 crystal according to underground low-background semiconductor spectrometer data. Preprint INR of RAS № 1237/2009 Moscow (Rus).

14. Alenkov V. et al. Growth and characterization of isotopically enriched 40Ca100MoO4 single crystals for rare event search experiments. Cryst. Res. Technol. 46 (2011) 1223. https://doi.org/10.1002/crat.201100364

15. JSC Fomos-Materials. http://newpiezo.com/index.html

16. Lee H.S. et al. Limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys. Rev. Lett. 99 (2007) 091301. https://doi.org/10.1103/PhysRevLett.99.091301

17. Kim H. J. et al. Neutrino-Less Double Beta Decay Experiment Using Ca100MoO4 Scintillation Crystals. IEEE Trans. Nucl. Sci. 57 (2010) 1457. https://doi.org/10.1109/TNS.2010.2043264

18. So J. H. et al. 4π CsI(Tl) detector for EC/β+ decay searching in 84Sr. NSS-MIC Conf. Record 55 (2008) 3259. https://doi.org/10.1109/NSSMIC.2008.4775041

19. Lee J. I. et al. Experimental study on neutrinoless double beta decay of 92Mo. Nucl. Instrum. Meth. A 654 (2011) 157. https://doi.org/10.1016/j.nima.2011.05.083

20. Lee J. I. et al. Experimental study on neutrinoless double beta decay of 92Mo. Reprinted from Nucl. Instrum. Meth. A 654 (2011) 157, with permission from Elsevier.

21. Back H. O. et al. Pulse-shape discrimination with the Counting Test Facility. Nucl. Instr. Meth. A 584 (2008) 98. https://doi.org/10.1016/j.nima.2007.09.036

22. Lee H. S. et al. Development of low background CsI(Tl) crystals for WIMP search. Nucl. Instrum. Meth. A 571 (2007) 644. https://doi.org/10.1016/j.nima.2006.10.325