ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Surface boiling – an obvious but like no other decay mode of highly excited atomic nuclei
J. Tõke1
1Department of Chemistry, University of Rochester, Rochester, NY, USA
Abstract: Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments – the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation – a decay mode here named distillative spinodal vaporization.
Keywords: compound nuclear model, excited nuclear systems, spinodal vaporization, excitation energy finite nuclei, distillative spinodal vaporization.
References:1. Weisskopf V. Statistics and nuclear reactions. Phys. Rev. 52 (1937) 295. https://doi.org/10.1103/PhysRev.52.295
2. Bohr N., Wheeler J. A. The mechanism of nuclear fission. Phys. Rev. 56 (1939) 426. https://doi.org/10.1103/PhysRev.56.426
3. Gavron A. Statistical model calculations in heavy ion reactions. Phys. Rev. C 21 (1980) 230. https://doi.org/10.1103/PhysRevC.21.230
4. Charity R. J. Systematic description of evaporation spectra for light and heavy compound nuclei. Phys. Rev. C 82 (2010) 014610. https://doi.org/10.1103/PhysRevC.82.014610
5. Charity R. J. Unified description of fission in fusion and spallation reactions. Phys. Rev. C 82 (2010) 044610. https://doi.org/10.1103/PhysRevC.82.044610
6. Tõke J., Schröder W. U. Common signatures of statistical Coulomb fragmentation of highly excited nuclei and phase transitions in confined microcanonical systems. Phys. Rev. C 79 (2009) 064622. https://doi.org/10.1103/PhysRevC.79.064622
7. Friedman W. A. Basis for a Characteristic Temperature in Nuclear Fragmentation. Phys. Rev. Lett. 60 (1988) 2125. https://doi.org/10.1103/PhysRevLett.60.2125
8. Gross D. H. E. Statistical decay of very hot nuclei - the production of large clusters. Rep. Prog. Phys. 53 (1990) 605. https://doi.org/10.1088/0034-4885/53/5/003
9. Bondorf J. P. et al. Statistical multifragmentation of nuclei. Phys. Rep. 133 (1995) 133. https://doi.org/10.1016/0370-1573(94)00097-M
10. Wada R. et al. Temperatures and excitation energies of hot nuclei in the reactions of 32S + Ag and 16O + Ag at 30 MeV/nucleon. Phys. Rev. C 39 (1989) 497. https://doi.org/10.1103/PhysRevC.39.497
11. Natowitz J. B. et al. Caloric curves and critical behavior in nuclei. Phys. Rev. C 65 (2002) 34618. https://doi.org/10.1103/PhysRevC.65.034618
12. Tõke J., Schröder W. U. New Type of Shape Instability of Hot Nuclei and Nuclear Fragmentation. Phys. Rev. Lett. 82 (1999) 5008. https://doi.org/10.1103/PhysRevLett.82.5008
13. Tõke J., Lu J., Schröder W. U. Surface entropy in statistical emission of massive fragments from equilibrated nuclear systems. Phys. Rev. C 67 (2003) 034609. https://doi.org/10.1103/PhysRevC.67.034609
14. Tõke J., Lu J., Schröder W. U. Liquid-gas coexistence and critical behavior in boxed neutral, isosymmetric pseudo-Fermi matter. Phys. Rev. C 67 (2003) 044307. https://doi.org/10.1103/PhysRevC.67.044307
15. Tõke J., Pieńkowski L., Sobotka L. G. et al. Retardation of particle evaporation from excited nuclear systems due to thermal expansion. Phys. Rev. C 72 (2005) 031601. https://doi.org/10.1103/PhysRevC.72.031601
16. Tõke J., Schröder W. U. Surface boiling - a new type of instability of highly excited atomic nuclei. arXiv:1207.3828v1 (2012).
17. Tõke J. Surface boiling - an "obvious" explanation for the observed limiting temperature of finite nuclei. Proc. of the Int. Workshop on Multifragmentation and Related Topics. Ed. by J.D. Frankland et al. EPJ Web of Conferences Vol. 31 0006 (Caen, France, 2011). https://doi.org/10.1051/epjconf/20123100006
18. Tõke J., Swiatecki W. J. Surface-layer corrections to the level-density formula for a diffuse Fermi gas. Nucl. Phys. A 372 (1981) 141. https://doi.org/10.1016/0375-9474(81)90092-0
19. Chomaz P., Colonna M., Randrup J. Nuclear spinodal fragmentation. Phys. Rep. 389 (2004) 263. https://doi.org/10.1016/j.physrep.2003.09.006
20. Müller H., Serot B. Phase transitions in warm, asymmetric nuclear matter. Phys. Rev. C 52 (1995) 2072. https://doi.org/10.1103/PhysRevC.52.2072
21. Barranco M., Buchler J. Thermodynamic properties of hot nucleonic matter. Phys. Rev. C 22 (1980) 1729. https://doi.org/10.1103/PhysRevC.22.1729