Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 2, pages 113-120.
Section: Nuclear Physics.
Received: 24.04.2013; Published online: 30.06.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.02.113

DAMA/LIBRA results and perspectives of the second stage

R. Bernabei1, P. Belli1, F. Cappella2, V.Caracciolo3, R. Cerulli3, C. J. Dai4, A. d`Angelo2, A. Di Marco1, H. L. He4, A. Incicchitti2, X. H. Ma4, F. Montecchia1,5, X. D. Sheng4, R. G. Wang4, Z. P. Ye4,6

1Dipartimento di Fisica, Università di Roma "Tor Vergata" and Istituto Nazionale di Fisica Nucleare, Sezione di Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "La Sapienza" and Istituto Nazionale di Fisica Nucleare, Sezione di Roma "La Sapienza", Rome, Italy
3Laboratorio Nazionali del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Assergi (AQ), Italy
4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
5Laboratorio Sperimentale Policentrico di Ingegneria Medica, Università di Roma "Tor Vergata", Rome, Italy
6University of Jing Gangshan, Jiangxi, China

Abstract: The DAMA/LIBRA experiment is mainly dedicated to the investigation on DM particles in the Galactic halo by exploiting the model independent Dark Matter (DM) annual modulation signature. The present DAMA/LIBRA and the former DAMA/NaI (exposed masses: about 250 kg and about 100 kg of highly radiopure NaI(Tl), respectively) experiments have released so far a total exposure of 1.17 t · yr collected over 13 annual cycles; they provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9 σ C.L. The data of another annual cycle in the same DAMA/LIBRA running conditions are at hand. After the substitution (at fall 2010) of all the photomultipliers (PMTs) with new ones, having higher quantum efficiency, DAMA/LIBRA has entered the phase 2; that substitution has allowed to lower the software energy threshold of the experiment in the present data taking. Future perspectives are mentioned.

Keywords: Dark Matter, annual modulation, NaI(Tl) scintillator.

References:

1. Bernabei R. et al. Il Nuovo Cim. A 112 (1999) 545. https://doi.org/10.1007/BF03035868

2. Bernabei R. et al. Phys. Lett. B 389 (1996) 757; Phys. Lett. B 424 (1998) 195; Phys. Lett. B 450 (1999) 448; Phys. Rev. D 61 (2000) 023512; Phys. Lett. B 480 (2000) 23; Phys. Lett. B 509 (2001) 197; Eur. Phys. J. C 23 (2002) 61; Phys. Rev. D 66 (2002) 043503.

3. Bernabei R. et al. Eur. Phys. J. C 18 (2000) 283. https://doi.org/10.1007/s100520000540

4. Bernabei R. el al. La Rivista del Nuovo Cimento 26 (2003) 1. https://doi.org/10.1007/BF03548916

5. Bernabei R. et al. Int. J. Mod. Phys. D 13 (2004) 2127. https://doi.org/10.1142/S0218271804006619

6. Bernabei R. et al. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9

7. Bernabei R. et al. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0

8. Bernabei R. et al. Phys. Lett. B 408 (1997) 439; Belli P. et al. Phys. Lett. B 460 (1999) 236; Bernabei R. et al. Phys. Rev. Lett. 83 (1999) 4918; Belli P. et al. Phys. Rev. C 60 (1999) 065501; Bernabei R. et al. Il Nuovo Cimento A 112 (1999) 1541; Phys. Lett. B 515 (2001) 6; Cappella F. et al. Eur. Phys. J. C 14 (2002) 1; Bernabei R. et al. Eur. Phys. J. A 23 (2005) 7; Eur. Phys. J. A 24 (2005) 51; Astropart. Phys. 4 (1995) 45; The identification of Dark Matter (Singapore: World Sc. Pub., 1997) 574.

9. Belli P. et al. Astropart. Phys. 5 (1996) 217; Nuovo Cim. C 19 (1996) 537; Phys. Lett. B 387 (1996) 222; Phys. Lett. B 389 (1996) 783 err.; Bernabei R. et al. Phys. Lett. B 436 (1998) 379; Belli P. et al. Phys. Lett. B 465 (1999) 315; Phys. Rev. D 61 (2000) 117301; Bernabei R. et al. New J. of Phys. 2 (2000) 15.1; Phys. Lett. B 493 (2000) 12; Nucl. Instr. & Meth A 482 (2002) 728; Eur. Phys. J. direct C 11 (2001) 1; Phys. Lett. B 527 (2002)182; Phys. Lett. B 546 (2002) 23; Beyond the Desert 2003 (Berlin: Springer, 2003) 365; Eur. Phys. J. A 27 (2006) 35.

10. Bernabei R. et al. Astropart. Phys. 7 (1997) 73; Nuovo Cim. A 110 (1997) 189; Belli P. et al. Astropart. Phys. 10 (1999) 115; Nucl. Phys. B 563 (1999) 97; Bernabei R. et al. Nucl. Phys. A 705 (2002) 29; Belli P. et al. Nucl. Instr. & Meth. A 498 (2003) 352; Cerulli R. et al. Nucl. Instr. & Meth. A 525 (2004) 535; Bernabei R. et al. Nucl. Instr. & Meth. A 555 (2005) 270; Ukr. J. Phys. 51 (2006) 1037; Belli P. et al. Nucl. Phys. A 789 (2007)15; Phys. Rev. C 76 (2007) 064603; Phys. Lett. B 658 (2008) 193; Eur. Phys. J. A 36 (2008) 167; Nucl. Phys. A 826 (2009) 256; Nucl. Instr. & Meth. A 615 (2010) 301; Nucl. Instr. & Meth. A 626-627 (2011) 31; J. Phys. G: Nucl. Part. Phys. 38 (2011) 015103; Nucl. Inst. & Meth. A 670 (2012) 10. https://doi.org/10.1088/0954-3899/38/1/015103

11. Belli P. et al. Nucl. Instr. & Meth. A 572 (2007) 734; Nucl. Phys. A 806 (2008) 388; Nucl. Phys. A 824 (2009) 101; Proc. of the Int. Conf. "NPAE-2008" (Kyiv, 2009) 473; Eur. Phys. J. A 42 (2009) 171; Nucl. Phys. A 846 (2010) 143; Nucl. Phys. A 859 (2011) 126; Phys. Rev. C 83 (2011) 034603; Eur. Phys. J. A 47 (2011) 91; Phys. Lett. B 711 (2012) 41.

12. Bernabei R. et al. Nucl. Instr. & Meth. A 592 (2008) 297.

13. Bernabei R. et al. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y

14. Bernabei R. et al. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9

15. Bernabei R. et al. Eur. Phys. J. C 62 (2009) 327. https://doi.org/10.1140/epjc/s10052-009-1068-1

16. Bernabei R. et al. Eur. Phys. J. C 72 (2012) 1920.

17. Bernabei R. et al. Eur. Phys. J. C 72 (2012) 2064. https://doi.org/10.1140/epjc/s10052-012-2064-4

18. Bernabei R. et al. Phys. Rev. D 77 (2008) 023506.

19. Bernabei R. et al. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473

20. Bernabei R. et al. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874

21. Bernabei R. et al. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093

22. Smith D., Weiner N. Phys. Rev. D 64 (2001) 043502; https://doi.org/10.1103/PhysRevD.64.043502

Tucker-Smith D., Weiner N. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.063509

23. Freese K. et al. Phys. Rev. D 71 (2005) 043516; https://doi.org/10.1103/PhysRevD.71.043516

Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.111301

24. Ling F. S., Sikivie P., Wick S. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503

25. Bernabei R. et al. AIP Conf. Proceed 1223 (2010) 50 [arXiv:0912.0660]; J. Phys.: Conf. Ser. 203 (2010) 012040 [arXiv:0912.4200]; (http://taup2009.lngs.infn.it/slides/jul3/nozzoli.pdf), talk given by F. Nozzoli; Can. J. Phys. 89 (2011) 141; SIF Atti Conf. 103 (2011) [arXiv:1007.0595]; Physics Procedia 37 (2012) 1095.

26. Bottino A. et al. Phys. Rev. D 81 (2010) 107302; Fornengo N. et al. D 83 (Phys. Rev) 015001; Fitzpatrick A. L. et al. Phys. Rev. D 81 (2010) 115005; Hooper D. et al. Phys. Rev. D 82 (2010) 123509; Belikov A. V. et al. Phys. Lett. B 705 (2011) 82; Kuflik E. et al. Phys. Rev. D 81 (2010) 111701; Chang S. et al. Phys. Rev. D 79 (2009) 043513; Chang S. et al. Phys. Rev. Lett. 106 (2011) 011301; Foot R. Phys. Rev. D 81 (2010) 087302; Bai Y., Fox P. J. JHEP 0911 (2009) 052; Alwall J. et al. Phys. Rev. D 81 (2010) 114027; Khlopov M. Yu. et al. arXiv:1003.1144; Andreas S. et al. Phys. Rev. D 82 (2010) 043522; Kopp J. et al. JCAP 1002 (2010) 014; Barger V. et al. Phys. Rev. D 82 (2010) 035019; Feng J. L. et al. Phys. Lett. B 703 (2011) 124.

27. Belli P. et al. Phys. Rev. D 84 (2011) 055014. https://doi.org/10.1103/PhysRevD.84.055014

28. Bottino A. et al. Phys. Rev. D 85 (2012) 095013. https://doi.org/10.1103/PhysRevD.85.095013

29. Aalseth C. E. et al. Phys. Rev. Lett. 106 (2011) 131301; Aalseth C. E. et al. Phys. Rev. Lett. 107 (2011) 141301.

30. Angloher G. et al. arXiv:1109.0702.

31. Ahmed Z. et al. Science 327 (2010) 1619. https://doi.org/10.1126/science.1186112

32. Armengaud E. et al. Phys. Lett. B 702 (2011) 329.

33. Aprile E. et al. Phys. Rev. Lett. 105 (2010) 131302.

34. Bernabei R. et al. "Liquid Noble gases for Dark Matter searches: a synoptic survey", Exorma Ed., Roma, ISBN 978-88-95688-12-1, 2009, pp. 1-53 [arXiv:0806.0011v2].

35. Collar J. I., McKinsey D. N. arXiv:1005.0838; arXiv:1005.3723; Collar J. I. arXiv:1006.2031; arXiv:1010.5187; arXiv:1103.3481; arXiv:1106.0653; arXiv:1106.3559.

36. Hudson R. Found. Phys. 39 (2009) 174. https://doi.org/10.1007/s10701-009-9271-3

37. Bernabei R. et al. Journal of Instrumentation 7 (2012) P03009. https://doi.org/10.1088/1748-0221/7/03/P03009