ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Stochastic resonance at diffusion over potential barrier
V. M. Kolomietz, S. V. Radionov
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The general problem of diffusive overcoming of a single-well potential barrier in the presence of a periodic time forcing is studied within the generalized Langevin approach. We found that the thermal diffusion over the barrier can be resonantly accelerated at some frequency of the periodic modulation that is inversely proportional to the mean first-passage time for the motion in the absence of the time-modulation. The resonant activation effect is rather insensitive to the correlation time of the random force term in the Langevin equation of motion.
Keywords: stochastic resonance, diffusion, potential barrier, Langevin equation, memory effects.
References:1. Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance. J. Phys. A 14 (1981) L453. https://doi.org/10.1088/0305-4470/14/11/006
2. McNamara B., Wiesenfeld K., Roy R. Observation of Stochastic Resonance in a Ring Laser. Phys. Rev. Lett. 60 (1988) 2626. https://doi.org/10.1103/PhysRevLett.60.2626
3. Grigorenko A., Nikitin P., Slavin A., Zhou P. Experimental observation of magnetostochastic resonance. J. Appl. Phys. 76 (1994) 6335. https://doi.org/10.1063/1.358258
4. Dykman M. I., Velikovich A. L., Golubev G. P. et al. Stochastic resonance in an all-optical passive bistable system. JETP Lett. 53 (1991) 193.
5. Kolomietz V. M., Radionov S .V. Non-Markovian diffusion over a potential barrier in the presence of periodic time modulation. Phys. Rev. E 84 (2011) 051123. https://doi.org/10.1103/physreve.84.051123
6. Kolomietz V. M., Radionov S. V., Shlomo S. Memory effects on descent from the nuclear fission barrier. Phys. Rev. C 64 (2001) 054302. https://doi.org/10.1103/PhysRevC.64.054302
7. Kramers H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7 (1940) 284. https://doi.org/10.1016/S0031-8914(40)90098-2
8. Hofmann H., Ivanyuk F. A. Mean First Passage Time for Nuclear Fission and the Emission of Light Particles. Phys. Rev. Lett. 90 (2003) 132701. https://doi.org/10.1103/PhysRevLett.90.132701
9. Hofmann H., Magner A. G. Mean first passage time for fission potentials having structure. Phys. Rev. C 68 (2003) 014606. https://doi.org/10.1103/PhysRevC.68.014606