А. Я. Дзюблик

ТРИГГЕРОВАНИЕ ¹⁷⁸Нf^{m2} ПРИ ФОТОИНДУЦИРОВАННОМ ЭЛЕКТРОННОМ ПЕРЕХОДЕ

Рассмотрено NEET (возбуждение ядер при электронных переходах) как возможный механизм триггерования изомера $^{178}{\rm Hf}^{\rm m2}$ при ионизации атомной оболочки L_3 рентгеновскими лучами. Предполагается, что этот изомер 16^+ возбуждается в промежуточное состояние 15^- при электронном E1-переходе между оболочками M_5 и L_3 . Выведены простые нерелятивисткие формулы для вероятности NEET. Оценки показывают, что эта вероятность оказывается на порядок меньшей экспериментальных данных [1]. Найдено, что промежуточный уровень 15^- распадается в обход изомерного уровня 16^+ , если ядро в состоянии 15^- имеет неаксиальную форму и, кроме того, существует еще уровень 13^- , смещенный на 400 кэВ относительно 15^- . Показано также, что сечение NEET $\sigma_{\rm NEET}(E)$, как функция энергии рентгеновских фотонов E, приобретает постоянное значение выше порога ионизации L_3 -оболочки в отличие от узкого пика, наблюдавшегося в [1].

Ключевые слова: ядерные изомеры, NEET, индуцированный распад, рентгеновские лучи, гафний, ядерные спектры.