![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Dynamics of free-radical processes in the animals after protracted influence of exogenous nitric oxide and ionizing radiation
L. I. Makovetska, O. B. Ganzha, N. K. Rodionova, M. O. Druzhyna, V. M. Mikhailenko
R. E. Kavetskyi Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Aim of the investigation was to study the influence of nitric oxide (NO) and low doses of ionizing radiation (LDIR) on free radical processes that occur in various tissues of mammalian organism. Fractionated LDIR irradiation was shown to temporarily disrupt an oxidative metabolism. At same time protracted NO inhalation causes more significant harmful effects. This indicated that there are two pathways of oxidative metabolism disruption caused by generation of reactive oxygen or nitrogen species in tissues of mammalian organism.
Keywords: low doses of ionizing radiation, nitric oxide, superoxide radical, free radical processes, antioxidative enzymes.
References:1. Richardson D. B. Cancer risks and radiation. Occup. Environ. Med. 66 (2009) 785. https://doi.org/10.1136/oem.2009.048363
2. UNCEAR. Sources, Effects and Risk of Ionizing Radiation (New-York: United Nations, 2002) 647 p.
3. Valko M., Leibfritz D., Moncol J. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39 (2007) 44. https://doi.org/10.1016/j.biocel.2006.07.001
4. Ortega Á. L., Mena S., Estrela J. M. Oxidative and Nitrosative Stress in the Metastatic Microenvironment. Cancers 2 (2010) 274. https://doi.org/10.3390/cancers2020274
5. Dhalla N. S., Temsah R. M., Netticadan T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18 (2000) 655. https://doi.org/10.1097/00004872-200018060-00002
6. Sayre L. M., Smith M. A., Perry G. Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. Curr. Med. Chem. 8 (2001) 721. https://doi.org/10.2174/0929867013372922
7. Dalle-Donne I., Rossi R., Colombo R. et al. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 52 (2006) 601. https://doi.org/10.1373/clinchem.2005.061408
8. М. Б. Лю, И. С. Подобед, А. К. Едыгенова, Б. Н. Лю. Кислородно-перекисный механизм канцерогенеза и модификация ДНК. Успехи современной биологии 125 (2005) 179.
9. Я. И. Серкиз, Н. А. Дружина, А. П. Хриенко и др. Хемилюминесценция крови при радиационном воздействии (Київ: Наук. думка, 1989) 176 с.
10. Львовская Е. А., Волчегоровский И. А., Шемяков С. А. и др. Спектрофотометрическое определение конечных продуктов перекисного окисления липидов. Вопр. мед. хим. 37 (1991) 92.
11. Liochev S. I., Fridovich I. Lucigenin (Bis-N-methylacridinium) as a Mediator of Superoxide Anion Production. Archives of Biochemistry and Biophysics 337 (1997) 115. https://doi.org/10.1006/abbi.1997.9766
12. Королюк М. А, Иванова Л. И., Майорова И. Г. Метод определения активности каталазы. Лабораторное дело 1 (1988) 16.
13. Чевари С., Андял Т., Итренгер Я. Определение антиоксидантных параметров крови и их диагностическое значение в пожилом возрасте. Лабораторное дело 10 (1991) 9.
14. Дружина М. О., Бурлака А. П., Моісеєва Н. П. та ін. Біохімічні порушення та їх корекція в організмі ссавців, які живуть у Чорнобильській зоні відчуження. Чорнобиль. Зона відчуження (Київ: Наук. думка, 2001) c. 521.
15. Saran M., Michel C., Bors W. Reaction of NO with O2-. Implications for the Action of Endothelium-Derived Relaxing Factor (EDRF). Free Rad. Res. Commun. 10 (1990) 221. https://doi.org/10.3109/10715769009149890