![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Nuclear asymmetry energy, neutron skin and isovector stiffness
J. P. Blocki1, A. G. Magner2, A. A. Vlasenko2,3
1National Centre for Nuclear Research, Otwock, Poland
2Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute of Physics and Technology, NTUU "KPI", Kyiv, Ukraine
Abstract: The isovector particle densities and surface tension coefficients for the average binding energy in the approximation of a sharp edge proton-neutron asymmetric nucleus are used for analytical calculations of its neutron skin and isovector stiffness coefficients. They are significantly different from the well-known ones for the most Skyrme forces. The energies and energy-weighted sum rules of the isovector giant dipole resonances obtained within the Fermi-liquid drop model are in good agreement with the experimental data.
Keywords: nuclear binding energy, symmetry surface energy, proton-neutron asymmetry, neutron skin, isovector stiffness, dipole giant resonances.
References:1. Myers W. D., Swiatecki W. J. Average Nuclear Properties. Ann. Phys. 55 (1969) 395; https://doi.org/10.1016/0003-4916(69)90202-4
Ann. Phys. 84 (1974) 186; https://doi.org/10.1016/0003-4916(74)90299-1 Nucl. Phys. A 336 (1980) 267; https://doi.org/10.1016/0375-9474(80)90623-5 Phys. Rev. C 601 (1996) 141. https://doi.org/10.1016/0375-9474(95)00509-92. Myers W. D., Swiatecki W. J., Kodama T., El-Jaick L. J., Hilf E. R. Droplet model of the giant dipole resonance. Phys. Rev. C 15 (1977) 2032. https://doi.org/10.1103/PhysRevC.15.2032
3. Myers W. D., Swiatecki W. J., Wang C. S. The surface energy of multi-component systems. Nucl. Phys. A 436 (1985) 185. https://doi.org/10.1016/0375-9474(85)90548-2
4. Danielewicz P. Surface symmetry energy. Nucl. Phys. A 727 (2003) 233. https://doi.org/10.1016/j.nuclphysa.2003.08.001
5. Danielewicz P., Lee J. Symmetry energy in nuclear surface. Int. J. Mod. Phys. E 18 (2009) 892. https://doi.org/10.1142/S0218301309013014
6. Warda M., Vinas X., Roca-Maza X., Centelles M. Neutron skin thickness in droplet model with surface width dependence: Indication of softness of the nuclear symmetry energy. Phys. Rev. C 80 (2009) 024316. https://doi.org/10.1103/PhysRevC.80.024316
7. Strutinsky V. M., Tyapin A. S. Quasistatic droplet model of nucleus as the approximation to the statistical model. Soviet Phys. JETP Letters 8 (1964) 664.
8. Strutinsky V. M., Magner A. G., Brack M. The nuclear surface as a collective variable. Z. Phys. A 319 (1984) 205. https://doi.org/10.1007/BF01415634
9. Strutinsky V. M., Magner A. G., Denisov V. Yu. Density Distributions in Nuclei. Z. Phys. A 322 (1985) 149. https://doi.org/10.1007/BF01412028
10. Magner A. G., Sanzhur A. I., Gzhebinsky A. M. Asymmetry and Spin-Orbit Effects in Binding Energy in the Effective Nuclear Surface Approximation. Int. J. Mod. Phys. E 18 (2009) 885. https://doi.org/10.1142/S0218301309013002
11. Blocki J. P., Magner A. G., Ring P., Vlasenko A. A. Nuclear asymmetry energy and isovector stiffness within the effective surface approximation. Phys. Rev. C 87 (2012) 044304. https://doi.org/10.1103/PhysRevC.87.044304
12. Brack M., Guet C., Hakanson H. -B. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
13. Brack M., Bhaduri R. K. Semiclassical Physics. 2-nd edition (Boulder: Westview Press, 2003) 458 p.
14. Chabanat E., Bonche P., Haensel P. et al. A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627 (1997) 710; Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(97)00596-4
15. Denisov V. Yu. Dipole resonances in the gas-liquid model of the nucleus. Sov. J. Nucl. Phys. 43 (1986) 28.
16. Kolomietz V. M., Magner A. G. Collective excitations in Neutron-Rich Nuclei within the Model of a Fermi Liquid Drop. Phys. Atom. Nucl. 63 (2000) 1732. https://doi.org/10.1134/1.1320142
17. Kolomietz V. M., Magner A. G., Shlomo S. Splitting of the isovector giant dipole resonances in neutron-rich spherical nuclei. Phys. Rev. C 73 (2006) 024312. https://doi.org/10.1103/PhysRevC.73.024312
18. Eisenberg J. M., Greiner W. Nuclear Theory. Vol. 1 - Nuclear Models: Collective and Single-Particle Phenomena (Amsterdam-London: North-Holland Publishing Company, 1970) 456 p.
19. Plujko V. A., Gorbachenko O. M., Capote R., Bondar V. M. Statistical description of dipole gamma-transitions in atomic nuclei. Proc. of the 3-rd Int. Conf. "Current problems in Nuclear Physics and Atomic Energy", Kyiv, Ukraine, June 7 - 12, 2010, Part I (Kyiv, 2011) p. 342.
20. Plujko V. A., Gorbachenko O. M., Bondar V. M., Capote R. Renewed Datebase of GDR Parameters for Atomic Nuclei. J. of the Korean Physical Society 59 (2011) 1514. https://doi.org/10.3938/jkps.59.1514
21. Plujko V. A., Capote R., Gorbachenko O. M. Giant dipole resonance parameters with uncertainties from photonuclear cross sections. Atomic Data and Nuclear Data Tables 97 (2011) 567. https://doi.org/10.1016/j.adt.2011.04.001
22. Ring P. Theory of dipole-resonances in nuclei close and far from stability. Zakopane Conf. on Nuclear Physics (August 27 - September 2, 2012).
23. Siem S. Small resonances on the tail of the giant dipole resonances. The 4-th Int. Conf. "Current Problems in Nuclear Physics and Atomic Energy" (Kyiv, Ukraine, September 3 - 7, 2012).
24. Strutinsky V. M., Magner A. G. Quasiclassical theory of nuclear shell structure. Sov. J. Part. Nucl. 7 (1976) 138.
25. Gzhebinsky A. M., Magner A. G., Fedotkin S. N. Low-lying collective excitations of nuclei as a semiclassical response. Phys. Rev. C 76 (2007) 064315. https://doi.org/10.1103/PhysRevC.76.064315
26. Blocki J. P., Magner A. G., Yatsyshyn I. S. Gross-shell effects in the dissipative nuclear dynamics. Int. J. Mod. Phys. E 21 (2012) 1250034. https://doi.org/10.1142/S0218301312500346