Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2012, volume 13, issue 3, pages 228-236.
Section: Nuclear Physics.
Received: 10.05.2012; Published online: 30.09.2012.
PDF Full text (en)
https://doi.org/10.15407/jnpae2012.03.228

Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei

R. N. Panda1, M. Bhuyan2, S. K. Patra3

1Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India
2School of Physics, Sambalpur University, Jyotivihar, Sambalpur, India
3Institute of Physics, Sachivalaya Marg, Bhubaneswar, India

Abstract: The structural properties of the recently predicted thermally fissile neutron-rich Uranium and Thorium isotopes are studied using the relativistic mean field formalism. The investigation of the new phenomena of multifragmentation fission is analyzed. In addition to the fission properties, the total nuclear reaction cross section which is a measure of the probability of production of these nuclei is evaluated taking 6,11Li and 16,24O as projectiles. The possible use of nuclear fuel in an accelerator based reactor is discussed which may be the substitution of 233,235U and 239Pu for nuclear fuel in near future.

Keywords: relativistic mean field formalism, matter density distribution, nuclear reaction cross section, multifragmentation fission.

References:

1. Satpathy L., Patra S. K., Choudhury R. K. Fission decay properties of ultra neutron-rich uranium isotope. PRAMANA - J. Phys. 70 (2008) 87. https://doi.org/10.1007/s12043-008-0007-2

2. Patra S. K., Choudhury R. K., Satpathy L. Anatomy of neck configuration in fission decay. J. Phys. G 37 (2010) 085103. https://doi.org/10.1088/0954-3899/37/8/085103

3. Glauber R. J. Lectures on Theoretical Physics. Ed. by Brittin W. E and Dunham L. C. (New York: Interscience, 1959) Vol. 1, 315 p.

4. Abu-Ibrahim B., Ogawa Y., Suzuki Y., Tanihata I. Cross section calculations in Glauber model: I. core plus one-nucleon case. Comp. Phys. Comm. 151 (2003) 369. https://doi.org/10.1016/S0010-4655(02)00734-8

5. Patra S. K., Panda R. N., Arumugam P., Gupta Raj K. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities. Phys. Rev. C 80 (2009) 064602. https://doi.org/10.1103/PhysRevC.80.064602

6. Panda R. N., Patra S. K. FFormation of Neutron-Rich and Superheavy Elements in Astrophysical Objects. J. Mod. Phys. 1 (2010) 312. https://doi.org/10.4236/jmp.2010.15044

7. Patra S. K., Praharaj C. R. Relativistic mean field study of light medium nuclei away from beta stability. Phys. Rev. C 44 (1991) 2552. https://doi.org/10.1103/PhysRevC.44.2552

8. Gambhir Y. K., Ring P., Thimet A. Relativstic mean field theory for finite nuclei. Ann. Phys. (N.Y.) 198 (1990) 132. https://doi.org/10.1016/0003-4916(90)90330-Q

9. Boguta J., Bodmer A. R. Relativistic calculation of nuclear matter and nuclear surface. Nucl. Phys. A 292 (1977) 413. https://doi.org/10.1016/0375-9474(77)90626-1

10. Miller L. D., Green A. E. S. Relativistic Self-Consistent Meson Field Theory of Spherical Nuclei. Phys. Rev. C 5 (1972) 241. https://doi.org/10.1103/PhysRevC.5.241

11. Walecka J. D. A theory of highly condensed matter. Ann. of Phys. 83 (1974) 491. https://doi.org/10.1016/0003-4916(74)90208-5

12. Pannert W., Ring P., Boguta J. Relativistic Mean-Field Theory and Nuclear Deformation. Phys. Rev. Lett. 59 (1987) 2420. https://doi.org/10.1103/PhysRevLett.59.2420

13. Lalazissis A. G., König J., Ring P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55 (1997) 540. https://doi.org/10.1103/PhysRevC.55.540

14. Estal Del M., Centelles M., Vĩnas X., Patra S. K. Pairing properties in relativistic mean field models obtained from effective field theory. Phys. Rev. C 63 (2001) 044321. https://doi.org/10.1103/PhysRevC.63.044321

15. Patra S. K., Estal Del M., Centelles M., Vĩnas X. Ground-state properties and spins of the odd Z = N + 1 nuclei 61Ga - 97In. Phys. Rev. C 63 (2001) 024311. https://doi.org/10.1103/PhysRevC.63.024311

16. Estal Del. M., Centelles M., Vĩnas X. and Patra S. K. Effects of new nonlinear couplings in relativistic effective field theory. Phys. Rev. C 63 (2001) 024314. https://doi.org/10.1103/PhysRevC.63.024314

17. Arumugam P., Sharma B. K., Sahu P. K. et al. Phys. Lett. B 601 (2004) 51. https://doi.org/10.1016/j.physletb.2004.09.026

18. Serot B. D., Walecka J. D. Recent Progress in Quantum Hadrodynamics. Int. J. Mod. Phys. E 6 (1997) 515. https://doi.org/10.1142/S0218301397000299

19. Karol P. J. Nucleus-nucleus reaction cross sections at high energies: Soft-spheres model. Phys. Rev. C 11 (1975) 1203 . https://doi.org/10.1103/PhysRevC.11.1203

20. Shukla P. Glauber model and the heavy ion reaction cross section. Phys. Rev. C 67 (2003) 054607. https://doi.org/10.1103/PhysRevC.67.054607

21. Bhagwat A., Gambhir Y. K. Microscopic description of recently measured reaction cross sections of neutron-rich nuclei in the vicinity of the N = 20 and N = 28 closed shells. Phys. Rev. C 77 (2008) 027602. https://doi.org/10.1103/PhysRevC.77.027602

22. Bhagwat A., Gambhir Y. K. Recently measured reaction cross sections with low energy fp-shell nuclei as projectiles: Microscopic description. Phys. Rev. C 73 (2006) 054601. https://doi.org/10.1103/PhysRevC.73.054601

23. Bhagwat A., Gambhir Y. K. Microscopic investigations of mass and charge changing cross sections. Phys. Rev. C 69 (2004) 014315. https://doi.org/10.1103/PhysRevC.69.014315

24. Charagi S. K., Gupta S. K. Coulomb-modified Glauber model description of heavy-ion reaction cross sections, Phys. Rev. C 41 (1990) 1610. https://doi.org/10.1103/PhysRevC.41.1610

25. Charagi S. K., Gupta S. K. Coulomb-modified Glauber model description of heavy-ion elastic scattering at low energies. Phys. Rev. C 46 (1992) 1982. https://doi.org/10.1103/PhysRevC.46.1982

26. Charagi S. K. Nucleus-nucleus reaction cross section at low energies: Modified Glauber model. Phys. Rev. C 48 (1993) 452. https://doi.org/10.1103/PhysRevC.48.452

27. Charagi S. K., Gupta S. K. Nucleus-nucleus elastic scattering at intermediate energies: Glauber model approach. Phys. Rev. C 56 (1997) 1171. https://doi.org/10.1103/PhysRevC.56.1171

28. Möller P., Nix J. R., Kratz K. -L. Nuclear properties for astrophysical and radioactive-ion-beam applications. At. Data Nucl. Data Tables 66 (1997) 131. https://doi.org/10.1006/adnd.1997.0746

29. Möller P., Nix J. R. Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002

30. Audi G., Wapstra A. H., Thebault C. The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

31. Nortershauser W., Neff T., Sanchez R., Sick I. Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined. Phys. Rev. C 84 (2011) 024307. https://doi.org/10.1103/PhysRevC.84.024307

32. Dubler T. et al. Nuclear charge radii from X-ray transitions in muonic atoms of carbon, nitrogen and oxygen. Nucl. Phys. A 219 (1974) 29. https://doi.org/10.1016/0375-9474(74)90080-3

33. Audi G., Wang Meng. Private communication (April 2011).

34. Friese V., Sturm C. CBM Progress report. ISBN 978-3-9811298-8-5 (2010). www.gsi.de

www.faircenter.eu