![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei
R. N. Panda1, M. Bhuyan2, S. K. Patra3
1Department of Physics, Institute of Technical Education and Research,
Siksha O Anusandhan University, Bhubaneswar, India
2School of Physics, Sambalpur University, Jyotivihar, Sambalpur, India
3Institute of Physics, Sachivalaya Marg, Bhubaneswar, India
Abstract: The structural properties of the recently predicted thermally fissile neutron-rich Uranium and Thorium isotopes are studied using the relativistic mean field formalism. The investigation of the new phenomena of multifragmentation fission is analyzed. In addition to the fission properties, the total nuclear reaction cross section which is a measure of the probability of production of these nuclei is evaluated taking 6,11Li and 16,24O as projectiles. The possible use of nuclear fuel in an accelerator based reactor is discussed which may be the substitution of 233,235U and 239Pu for nuclear fuel in near future.
Keywords: relativistic mean field formalism, matter density distribution, nuclear reaction cross section, multifragmentation fission.
References:1. Satpathy L., Patra S. K., Choudhury R. K. Fission decay properties of ultra neutron-rich uranium isotope. PRAMANA - J. Phys. 70 (2008) 87. https://doi.org/10.1007/s12043-008-0007-2
2. Patra S. K., Choudhury R. K., Satpathy L. Anatomy of neck configuration in fission decay. J. Phys. G 37 (2010) 085103. https://doi.org/10.1088/0954-3899/37/8/085103
3. Glauber R. J. Lectures on Theoretical Physics. Ed. by Brittin W. E and Dunham L. C. (New York: Interscience, 1959) Vol. 1, 315 p.
4. Abu-Ibrahim B., Ogawa Y., Suzuki Y., Tanihata I. Cross section calculations in Glauber model: I. core plus one-nucleon case. Comp. Phys. Comm. 151 (2003) 369. https://doi.org/10.1016/S0010-4655(02)00734-8
5. Patra S. K., Panda R. N., Arumugam P., Gupta Raj K. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities. Phys. Rev. C 80 (2009) 064602. https://doi.org/10.1103/PhysRevC.80.064602
6. Panda R. N., Patra S. K. FFormation of Neutron-Rich and Superheavy Elements in Astrophysical Objects. J. Mod. Phys. 1 (2010) 312. https://doi.org/10.4236/jmp.2010.15044
7. Patra S. K., Praharaj C. R. Relativistic mean field study of light medium nuclei away from beta stability. Phys. Rev. C 44 (1991) 2552. https://doi.org/10.1103/PhysRevC.44.2552
8. Gambhir Y. K., Ring P., Thimet A. Relativstic mean field theory for finite nuclei. Ann. Phys. (N.Y.) 198 (1990) 132. https://doi.org/10.1016/0003-4916(90)90330-Q
9. Boguta J., Bodmer A. R. Relativistic calculation of nuclear matter and nuclear surface. Nucl. Phys. A 292 (1977) 413. https://doi.org/10.1016/0375-9474(77)90626-1
10. Miller L. D., Green A. E. S. Relativistic Self-Consistent Meson Field Theory of Spherical Nuclei. Phys. Rev. C 5 (1972) 241. https://doi.org/10.1103/PhysRevC.5.241
11. Walecka J. D. A theory of highly condensed matter. Ann. of Phys. 83 (1974) 491. https://doi.org/10.1016/0003-4916(74)90208-5
12. Pannert W., Ring P., Boguta J. Relativistic Mean-Field Theory and Nuclear Deformation. Phys. Rev. Lett. 59 (1987) 2420. https://doi.org/10.1103/PhysRevLett.59.2420
13. Lalazissis A. G., König J., Ring P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55 (1997) 540. https://doi.org/10.1103/PhysRevC.55.540
14. Estal Del M., Centelles M., Vĩnas X., Patra S. K. Pairing properties in relativistic mean field models obtained from effective field theory. Phys. Rev. C 63 (2001) 044321. https://doi.org/10.1103/PhysRevC.63.044321
15. Patra S. K., Estal Del M., Centelles M., Vĩnas X. Ground-state properties and spins of the odd Z = N + 1 nuclei 61Ga - 97In. Phys. Rev. C 63 (2001) 024311. https://doi.org/10.1103/PhysRevC.63.024311
16. Estal Del. M., Centelles M., Vĩnas X. and Patra S. K. Effects of new nonlinear couplings in relativistic effective field theory. Phys. Rev. C 63 (2001) 024314. https://doi.org/10.1103/PhysRevC.63.024314
17. Arumugam P., Sharma B. K., Sahu P. K. et al. Phys. Lett. B 601 (2004) 51. https://doi.org/10.1016/j.physletb.2004.09.026
18. Serot B. D., Walecka J. D. Recent Progress in Quantum Hadrodynamics. Int. J. Mod. Phys. E 6 (1997) 515. https://doi.org/10.1142/S0218301397000299
19. Karol P. J. Nucleus-nucleus reaction cross sections at high energies: Soft-spheres model. Phys. Rev. C 11 (1975) 1203 . https://doi.org/10.1103/PhysRevC.11.1203
20. Shukla P. Glauber model and the heavy ion reaction cross section. Phys. Rev. C 67 (2003) 054607. https://doi.org/10.1103/PhysRevC.67.054607
21. Bhagwat A., Gambhir Y. K. Microscopic description of recently measured reaction cross sections of neutron-rich nuclei in the vicinity of the N = 20 and N = 28 closed shells. Phys. Rev. C 77 (2008) 027602. https://doi.org/10.1103/PhysRevC.77.027602
22. Bhagwat A., Gambhir Y. K. Recently measured reaction cross sections with low energy fp-shell nuclei as projectiles: Microscopic description. Phys. Rev. C 73 (2006) 054601. https://doi.org/10.1103/PhysRevC.73.054601
23. Bhagwat A., Gambhir Y. K. Microscopic investigations of mass and charge changing cross sections. Phys. Rev. C 69 (2004) 014315. https://doi.org/10.1103/PhysRevC.69.014315
24. Charagi S. K., Gupta S. K. Coulomb-modified Glauber model description of heavy-ion reaction cross sections, Phys. Rev. C 41 (1990) 1610. https://doi.org/10.1103/PhysRevC.41.1610
25. Charagi S. K., Gupta S. K. Coulomb-modified Glauber model description of heavy-ion elastic scattering at low energies. Phys. Rev. C 46 (1992) 1982. https://doi.org/10.1103/PhysRevC.46.1982
26. Charagi S. K. Nucleus-nucleus reaction cross section at low energies: Modified Glauber model. Phys. Rev. C 48 (1993) 452. https://doi.org/10.1103/PhysRevC.48.452
27. Charagi S. K., Gupta S. K. Nucleus-nucleus elastic scattering at intermediate energies: Glauber model approach. Phys. Rev. C 56 (1997) 1171. https://doi.org/10.1103/PhysRevC.56.1171
28. Möller P., Nix J. R., Kratz K. -L. Nuclear properties for astrophysical and radioactive-ion-beam applications. At. Data Nucl. Data Tables 66 (1997) 131. https://doi.org/10.1006/adnd.1997.0746
29. Möller P., Nix J. R. Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002
30. Audi G., Wapstra A. H., Thebault C. The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003
31. Nortershauser W., Neff T., Sanchez R., Sick I. Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined. Phys. Rev. C 84 (2011) 024307. https://doi.org/10.1103/PhysRevC.84.024307
32. Dubler T. et al. Nuclear charge radii from X-ray transitions in muonic atoms of carbon, nitrogen and oxygen. Nucl. Phys. A 219 (1974) 29. https://doi.org/10.1016/0375-9474(74)90080-3
33. Audi G., Wang Meng. Private communication (April 2011).
34. Friese V., Sturm C. CBM Progress report. ISBN 978-3-9811298-8-5 (2010). www.gsi.de
www.faircenter.eu