A. T. Rudchik, R. M. Zelinskyi, V. A. Plujko, A. P. Ilyin, Val. M. Pirnak, O. A. Ponkratenko, A. A. Rudchik, V. V. Uleschenko

ENERGY DEPENDENCE OF THE 6 Li + 16 O SCATTERING AND ISOTOPIC DIFFERENCES BETWEEN POTENTIALS OF THE 6,7 Li + 16 O INTERACTIONS

Experimental data of the 6 Li + 16 O elastic scattering at $E_{\rm c.m.}$ = 3.27 - 36.8 MeV known from literature, were analyzed within the optical model and coupled-reaction-channels method. The 6 Li + 16 O elastic and inelastic scattering as well as the reorientation of 6 Li and simplest transfer reactions were included in the coupled-channels-scheme. The 6 Li + 16 O potential parameters at different energies as well as their energy dependence were deduced accounting dispersion relation between real and imaginary parts of the potential. Contributions of the 6 Li reorientation and transfer reactions to the 6 Li + 16 O elastic scattering data were estimated at different energies. Real part of the 6 Li + 16 O deduced potential and the 6 Li + 16 O folding-potential are compared. The isotopic differences between the 6 Li + 16 O and 7 Li + 16 O were studied.

Keywords: heavy-ion elastic scattering, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.