Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Charge accumulation on metal strip-detector sensors under ion beam irradiation: experiment and modeling
M. V. Makarets1, E. O. Petrenko1, V. M. Pugatch2
1Taras Shevchenko National University, Kyiv, Ukraine
2Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: This paper presents the Monte-Carlo simulation of charged particles motion in aluminum film of several tens micrometers thickness, which is a sensor part of a strip-detector. It was considered that secondary electrons are generated by copper ions Cu++ with energy 5 - 25 keV. An elastic collisions with target atoms, atomic levels ionization and electron capture have been taken into account for the ions, and for the secondary electrons - elastic collisions with target atoms, atomic levels ionization, plasmons and phonons generation. The derived dependence of the charge accumulated by sensor on ion beam energy is matching experimental data.
Keywords: ion beams, thin films, secondary electron emission, metal strip-detector, modeling.
References:1. Pugatch V. et al. Micro-strip metal foil detectors for the beam profile monitoring. Proc. of the DIPAC 2005 (Lyon, France, 2005) p. 18.
2. Pugatch V., Mykhailenko O. Micro-strip metal detector for the beam profile monitoring. Nucl. Instr. Meth. A 581 (2007) 531. https://doi.org/10.1016/j.nima.2007.08.042
3. Pugatch V. et al. Metal and Hybrid TimePix detectors imaging beams of particles. Nucl. Instr. Meth. A 650 (2011) 194. https://doi.org/10.1016/j.nima.2010.11.151
4. Martinez J. D., Mayol R., Salvat F. Monte Carlo simulation of kilovolt electron transport in solids. J. Appl. Phys. 67 (1980) 2955. https://doi.org/10.1063/1.345415
5. Ding Z. J., Shimizu R., Goto K. Background formation in the low-energy region in Auger electron spectroscopy. J. Appl. Phys. 76 (1994) 1187. https://doi.org/10.1063/1.357844
6. Ding Z. J., Tang X. D., Shimizu R. Monte Carlo study of secondary electron emission. J. Appl. Phys. 89 (2001) 718. https://doi.org/10.1063/1.1331645
7. Ding Z. J., Tang X. D., Li H. M. Monte Carlo calculation of the energy distribution of backscattered electrons. Int. J. Mod. Phys. B 16 (2002) 4405. https://doi.org/10.1142/S0217979202015509
8. Yasuda M., Yamauchi S., Kawata H., Murata K. Quantitative electron microprobe analysis of aluminum, copper, and gold thin films on silicon substrates. J. Appl. Phys. 92 (2002) 3404. https://doi.org/10.1063/1.1502923
9. Ding Z. J., Salma K., Zhang Z. M. Energy distribution of backscattered electrons from heavy metals. Acta Metallurgica Sinica 18 (2005) 345.
10. Salvat F., Fernández-Varea J. M. Overview of physical interaction models for photon and electron transport used in Monte Carlo codes. Metrologia 46 (2009) 112. https://doi.org/10.1088/0026-1394/46/2/S08
11. Mao S. F., Ding Z. J. A Monte Carlo simulation study on the image resolution in scanning electron microscopy. Surface and Interface Analysis 42 (2010) 1096. https://doi.org/10.1002/sia.3340
12. Мотт Н., Месси Г. Теория атомных столкновений (Москва: Мир, 1969) 756 с.
13. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 1. Механика (Москва: Наука, 1973) 208 с.
14. Kim Y. -K., Rudd M. E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 50 (1994) 3954. https://doi.org/10.1103/PhysRevA.50.3954
15. Hwanga W., Kim Y. -K., Rudd M. E. New model for electron-impact ionization cross sections of molecules. J. Chem. Phys. 104 (1996) 2956. https://doi.org/10.1063/1.471116
16. Penn D. R. Electron mean-free-paths calculation using a model dielectric function. Phys. Rev. B 35 (1987) 482. https://doi.org/10.1103/PhysRevB.35.482
17. Макарець М. В., Сторчака С. Н. Новий метод розрахунку розподілу імплантованих іонів. 1. Алгоритм та семиінваріанти. Укр. фіз. журнал 46 (2001) 486.
18. Ziegler J. F., Biersack, Littmark U. The Stopping and Ranges of Ions in Solids. Vol. 1 (N. Y.: Pergamon Press, 1985) 321 p.
19. Gryzinski M. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Phys. Rev. A 138 (1965) 336. https://doi.org/10.1103/PhysRev.138.A336
20. Kaganovich I. D., Startsev E., Davidson R. C. Scaling and formulary of cross-sections for ion-atom impact ionization. New Journal of Physics 8 (2006) 1. https://doi.org/10.1088/1367-2630/8/11/278
21. Федоренко Н. В. Ионизация при столкновениях ионов с атомами. Укр. фіз. журнал 68 (1959) 481.
22. Garcia J. D., Gerjuoy E., Welker Jean E. Phys. Rev. 165 (1968) 72. https://doi.org/10.1103/PhysRev.165.72
23. Атомные и молекулярные процессы. Под ред. Д. Бейтс (Москва: Мир, 1964).
24. Briggs J. S., Taulbjerg K. Structure and Collisions of Ions and Atoms. Topics Curr. Phys. Vol. 5. (Berlin: Springer, 1978).
25. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 3. Квантовая механика (Москва: Наука, 1989) 593 с.