Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2012, volume 13, issue 1, pages 73-82.
Section: Radiation Physics.
Received: 27.09.2011; Published online: 30.03.2012.
PDF Full text (en)
https://doi.org/10.15407/jnpae2012.01.073

Mössbauer forward scattering spectra of ferromagnets in radio-frequency magnetic field

A. Ya. Dzyublik1, E. K. Sadykov2, G. I. Petrov3, V. V. Arinin2, F. H. Vagizov2, V. Yu. Spivak1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kazan Federal University, Kazan, Russia
3Kazan State Power Engineering University, Kazan, Russia

Abstract: The transmission of Mössbauer radiation through a thick ferromagnetic crystal, subjected to the radio-frequency (rf) magnetic field, is studied. A quantum-mechanical dynamical scattering theory is developed, taking into account both the periodical reversals of the magnetic field at the nuclei and their coherent vibrations. The Mössbauer forward scattering (FS) spectra of the weak ferromagnet FeBO3 exposed to the rf field are measured. It is discovered that the coherent gamma wave in the crystal, interacting with Mössbauer nuclei, absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra. Our experimental data and calculations well agree if we assume that the hyperfine field at the nuclei in FeBO3 periodically reverses and there are no coherent vibrations.

Keywords: Mössbauer spectroscopy, forward scattering spectra, iron borate, radio-frequency magnetic field.

References:

1. Sementsov D. I., Shutij A. M., Nonlinear regular and stochastic dynamics of magnetization in thin-film structures. Usp. Fiz. Nauk 177 (2007) 831; Physics Uspekhi 50 (2007) 793. https://doi.org/10.1070/pu2007v050n08abeh006147

2. Pfeiffer L. Collapse of the Magnetic Hyperfine Field by Intense rf Perturbation. J. Appl. Phys. 42 (1971) 1725. https://doi.org/10.1063/1.1660413

3. Pfeiffer L. 1972 Mössbauer Effect Methodology, Vol. 7. Ed. I. J. Gruverman (New York: Plenum, 1972) p. 263.

4. Srivastava J. K. Advances in Mössbauer Spectroscopy Ed. B. V. Thosar, P. K. Iengar, J. K. Srivastava, S. C. Bhargava (Amsterdam: Elsevier, 1983) p. 761.

5. Kopcewicz M. Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3. Ed. G. J. Long, F. Grandjem (New York: Plenum, 1989) p. 243.

6. Kopcewicz M. Mössbauer effect studies of amorphous metals in magnetic radiofrequency fields. Struct. Chem. 2 (1991) 313. https://doi.org/10.1007/BF00672228

7. Olariu S., Popesku I., Collins C.B. Tuning of γ-ray processes with high power optical radiation. Phys. Rev. C 23 (1981) 50; https://doi.org/10.1103/PhysRevC.23.50

Phys. Rev. C 23 (1981) 1007. https://doi.org/10.1103/PhysRevC.23.1007

8. Baldokhin Yu. V., Borshch S. A., Klinger L. M., Povitsky V. A. Zh. Eksp. Teor. Fiz. 63 (1972) 708;
Sov. Phys. JETP 36 (1972) 374.

9. Julian S. R., Daniels J. M. Collapse of Mössbauer spectra in strong applied radio-frequency fields. Phys. Rev. B 38 (1988) 4394. https://doi.org/10.1103/PhysRevB.38.4394

10. Dzyublik A. Ya. Effect of magnetic field reversals on the shape of Mössbauer spectra. Phys. Status Solidi (b) 194 (1996) 699. https://doi.org/10.1002/pssb.2221940226

11. Dzyublik A. Ya., Spivak V. Yu. Mössbauer absorption by soft ferromagnets in radio-frequency magnetic field. Zh. Eksp. Teor. Fiz. 111 (1997) 1438; JETP 84 (1997) 794.

12. Dzyublik A. Ya., Spivak V. Yu. Mössbauer Spectra of Vibrating Soft Ferromagnets in Reversing Magnetic Field. Phys. Status Solidi (b) 209 (1998) 127. https://doi.org/10.1002/(SICI)1521-3951(199809)209:1%3C127::AID-PSSB127%3E3.0.CO;2-S

13. Dzyublik A. Ya., Manapov R. A., Spivak V. Yu., Vagizov F. G. RF-photon induced Mössbauer satellites in permalloy. Pisma Zh. Eksp. Teor. Fiz. 67 (1998) 57; JETP Lett. 67 (1998) 61. https://doi.org/10.1134/1.567628

14. Dzyublik A. Ya., Spivak V. Yu. Mössbauer Spectra of Vibrating Soft Ferromagnets in Reversing Magnetic Field. Phys. Status Solidi (b) 209 (1998) 127. https://doi.org/10.1002/(SICI)1521-3951(199809)209:1%3C127::AID-PSSB127%3E3.0.CO;2-S

15. Asher J., Cranshaw T. E., O'Connor L. A. The observation of sidebands produced when monochromatic radiation passes through a vibrated resonant medium. J. Phys. A: Math. Nucl. Gen. 7 (1974) 410. https://doi.org/10.1088/0305-4470/7/3/012

16. Shvydko Yu. V., Smirnov G. V. Enhanced yield into the radiative channel in Raman nuclear resonant forward scattering. J. Phys.: Condens. Matter 4 (1992) 2663. https://doi.org/10.1088/0953-8984/4/10/028

17. Afanas'ev A. M., Chuev M. A., Hesse J. Relaxation Mössbauer spectra under rf magnetic field excitation. Phys. Rev. B 56 (1997) 5489. https://doi.org/10.1103/PhysRevB.56.5489

18. Hesse J., Graf T., Kopcewicz M., Afanas'ev A., Chuev M. Mössbauer experiments in radio frequency magnetic fields: A method for investigations of nanostructured soft magnetic materials. Hyperf. Inter. 113 (1998) 499. https://doi.org/10.1023/A:1012664825415

19. Shvid'ko Yu. V., Popov S. L., Smirnov G. V. Coherent re-emission of gamma-quanta in the forward direction after a stepwise change of the energy of nuclear excitation. J. Phys: Condens. Matter 5 (1993) 1557. https://doi.org/10.1088/0953-8984/5/10/013

20. Dzyublik A. Ya. Transient effects in Mössbauer absorption caused by magnetic field reversal. J. Phys.: Condens. Matter 11 (1999) 3915. https://doi.org/10.1088/0953-8984/11/19/311

21. Dzyublik A. Ya., Spivak V. Yu. Ukr. J. Phys. 47 (2002) 390.

22. Sadykov E. K., Dzyublik A. Ya., Petrov G. I. et al. Mössbauer forward scattering on FeBO3 in the RF remagnetization regime. Pisma Zh. Eksp. Teor. Fiz. 92 (2010) 279; JETP Lett. 92 (2010) 250. https://doi.org/10.1134/S0021364010160113

23. Goldberger M. L., Watson K. M. Collision Theory (New-York: Wiley, 1966).

24. Vagizov F. G., Manapov R. A., Sadykov E. K. et al. The effect of a radio-frequency magnetic field on resonant absorption saturation in FeBO3. Hyperf. Int. 188 (2009) 143. https://doi.org/10.1007/s10751-008-9902-7

25. Sadykov E. K., Arinin V. V., Vagizov F. G. Quantum interference in Mössbauer scattering spectra. Pisma Zh. Eksp. Teor. Fiz. 82 (2005) 484; JETP Lett. 82 (2005) 431. https://doi.org/10.1134/1.2142871

26. Lierop J., Ryan D. H., Superparamagnetic Spin Dynamics Studied Using Selective Excitation Double Mössbauer Spectroscopy. Phys. Rev. Lett. 85 (2000) 3021. https://doi.org/10.1103/PhysRevLett.85.3021

27. Lierop J., Ryan D. H. Spin Dynamics in a Frustrated Magnet. Phys. Rev. Lett. 86 (2001) 4390. https://doi.org/10.1103/PhysRevLett.86.4390

28. Lierop J., Ryan D. H. Dynamics in fine particle magnets. Phys. Rev. B 65 (2002) 104402. https://doi.org/10.1103/PhysRevB.65.104402

29. Dzyublik A. Ya. Mössbauer scattering by superparamagnetic particles. Phys. Status Solidi (b) 245 (2005) 1113. https://doi.org/10.1002/pssb.200402140

30. Dzyublik A. Ya. Effect of Forced Vibrations on the Scattering of X-Rays and Mössbauer Radiation by a Crystal (I). Phys. Status Solidi (b) 123 (1984) 53. https://doi.org/10.1002/pssb.2221230106

31. Dzyublik A. Ya. Effect of forced vibrations on the scattering of X-rays and Mössbauer radiation by a crystal. II. Dynamical effects. Phys. Status Solidi (b) 134 (1986) 503. https://doi.org/10.1002/pssb.2221340208

32. Berestetsky V. B., Lifshitz E. M., Pitaevskii L. P. Quantum Electrodynamics (Pergamon Press, 1980).

33. Hannon J. P., Trammell G. T. Mössbauer Diffraction. I. Quantum Theory of Gamma-Ray and X-Ray Optics. Phys. Rev. 169 (1968) 315. https://doi.org/10.1103/PhysRev.169.315

34. Hannon J. P., Trammell G. T. Mössbauer Diffraction. II. Dynamical Theory of Mössbauer Optics. Phys. Rev. 186 (1969) 306. https://doi.org/10.1103/PhysRev.186.306

35. Wolfe R., Kurtzig A.J., Le Craw L.C. Room-Temperature Ferromagnetic Materials Transparent in the Visible. J. Appl. Phys. 41 (1970) 1218. https://doi.org/10.1063/1.1658881

36. Kopcewicz M., Engelmann H., Stenger S. et al. Mössbauer study of the fast magnetization reversal in FeBO3 induced by external RF magnetic. Appl. Phys. A 44 (1987) 131. https://doi.org/10.1007/BF00626413

37. Kolotov O. S., Pogozhev V. A., Telesin R. V. et al. Phys. Status Solidi (a) 72 (1982) K197. https://doi.org/10.1002/pssa.2210720268