Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2012, volume 13, issue 1, pages 62-72.
Section: Atomic Energy.
Received: 31.01.2012; Published online: 30.03.2012.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2012.01.062

Problem of corium melt coolability in passive protection systems against severe accidents in the containment

Ali Kalvand, I. V. Kazachkov

National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

Abstract: Paper is devoted to the development of the mathematical model and analysis of the problem of corium melt interaction with low-temperature melting blocks in the passive protection systems against severe accidents at the NPP, which is of high importance for substantiation of the nuclear power safety, for building and successful operating of passive protection systems. In the third-generation reactors passive protection systems against severe accidents at the NPP are mandatory, therefore this paper is of importance for the nuclear power safety. A few configurations for the cooling blocks' distribution have been considered and an analysis of the blocks' melting and corium's cooling in the pool under reactor vessel have been done, which can serve more effective for further improvement of the safety current systems and for the development of new ones. The ways for solution of the problems and the methods for their successful elaboration were discussed. The developed mathematical models and the analysis performed in the paper might be helpful for the design of passive protection systems of the corium melt retention inside the containment after corium melt eruption from the broken reactor vessel.

Keywords: model, corium, melting blocks, solidification, coolability.

References:

1. Калванд Али, Казачков И. В. Особенности процессов плавления-затвердевания при погружении блоков в расплав высокотемпературного кориума. Ядерна фізика та енергетика 10 (2009) 178. https://jnpae.kinr.kyiv.ua/10.2/Articles_PDF/jnpae-2009-10-0178-Kalvand.pdf

2. Sehgal B. R. Accomplishments and challenges of the severe accident research. Nuclear Engineering and Design 210 (2001) 79. https://doi.org/10.1016/S0029-5493(01)00433-2

3. Казачков И. В. Современное состояние и некоторые проблемы моделирования тяжелых аварий на зарубежных АЭС. Ядерная и радиационная безопасность 1 (2003) 25.

4. Hasan Moghaddam Ali, Каzachkov І. V. Modelling of the corium melt interaction with water and vapor during severe accidents at NPP. 3rd WSEAS Int. Conf. (Univ. of Cambridge, February, 23 - 25, 2008) p. 71.

5. Казачков И. В., Хасан Могаддам Али. Моделирование теплогидравлических процессов при тяжелых авариях на АЭС (Київ: НТУУ "КПИ", 2008) 172 с.

6. LYG-X-PD86-29-52260000-TR-0026-E. Оценка классификации устройства локализации расплава активной зоны (СПб: АтомЭнергоПроект, 2000).

7. Asmolov V. V. Latest findings of RASPLAV Project. Proc. OECD/CSNI workshop on in-vessel core debris retention and coolability (1998) p. 34.

8. Bolshov L. A. et al. Numerical models of molten core spreading processes in nuclear reactor safety problems. Proc. of the 4th Int. Topical Meeting on Nuclear Thermal Hydraulics. Operations and Safety (Taipei, Taiwan, April, 1994) p. 7.

9. Kolev N. I. Verification of IVA5 computer code for melt-water interaction analysis. Proc. NURETH-9 (1999) p. 90.

10. Carboneau M. L., Berta V. T., Modro M. S. Experiment analysis and summary report for OECD LOFT Project Fission Product Experiment LP-FP-2. OECD LOFTT-3806 (1989) p. 57.

11. Reactor risk reference document. USNRC Report NUREG-1150 (U.S. Nuclear Regulatory Commission, 1987) 67 р.

12. Kazachkov I. V., Paladino D., Sehgal B. R. Ex-vessel coolability of a molten pool by coolant injection from submerged nozzles. 9th Int. Conf. Nucl. Energy Devel (Nice, France, April 8 - 12, 2001) p. 43.

13. Bechta S. V., Vitol S. A., Krushinov E. V. et al. Water boiling on the corium melt surface under VVER severe accident conditions. Nuclear Engineering and Design 195 (2000) 45. https://doi.org/10.1016/S0029-5493(99)00198-3

14. Kazachkov I. V., Konovalikhin M. J. A Steam flow through the volumetrically heated particle bed. Int. J. of Thermal Sciences 41 (2002) 1077. https://doi.org/10.1016/S1290-0729(02)01394-7

15. Kazachkov I. V., Konovalikhin M. J., Sehgal B. R. Dryout Location in a Low-porosity Volumetrically Heated Particle Bed. J. of Enhanced Heat Transfer 8 (2001) 397. https://doi.org/10.1615/JEnhHeatTransf.v8.i6.40

16. Konovalikhin M. J., Kazachkov I. V., Sehgal B. R. A model of the steam flow through the volumetrically heated saturated particle bed. ICMF 2001: Fourth Int. Conf. on Multiphase Flow (U.S.A., New Orleans, Louisiana, May 27 - June 1, 2001) p. 37.

17. Paladino D., Theerthan A., Sehgal B. R. Experimental Investigation on Debris Coolability by Bottom Injection, ANS: Annual Meeting (Boston, USA, 1999) p. 88.

18. Kazachkov I. V., Paladino D., Sehgal B. R. Ex-vessel coolability of a molten pool by coolant injection from submerged nozzles. 9th Int. Conf. Nucl. Energy Devel (Nice, France, April 8 - 12, 2001) p. 67.

19. Kazachkov I. V. Konovalikhin M. J., Sehgal B. R. Coolability of melt pools and debris beds with bottom injection. 2nd Japanese-European Two-Phase Flow Group Meeting (Tsukuba, Japan, 2000) p. 90.

20. Haraldsson H. O., Kazachkov I. V., Dinh T. N., Sehgal B. R. Analysis of thin jet breakup length in immiscible fluids. Abstr. 3rd Int. Conf. Adv. in Fluid Mechanics (Montreal, Canada, 24 - 26 May, 2000) p. 43.

21. Park H. S., Kazachkov I. V., Sehgal B. R. et al. Analysis of plunging jet penetration into liquid pool with various densities. Abstr. 3rd Int. Conf. Adv. in Fluid Mechanics (Montreal, Canada, 24 - 26 May, 2000) p. 56.

22. Kazachkov I. V., Dinh T. N., Haraldsson H. O., Sehgal B. R. Non-linear mathematical model of a thick jet penetration into liquid pool. Report NPS Div. (Stockholm: Royal Inst. of Technol., 1999) 23 p.

23. Okkonen T. Melt-Water Interactions in a reactor containment: from integrated assessment to phenomenological studies: PhD. thesis (Stockholm: RIT/NPS, 1998) 85 p.

24. Асмолов В. Г. Концепция управления тяжелыми авариями на АЭС с ВВЭР. Сб. тр. научно-практического семинара "Вопросы безопасности АЭС с ВВЭР. Исследования процессов при запроектных авариях с разрушением активной зоны", Т. 1 (С.-Петербург, 12 - 14 сентября 2000 г.) c. 1.

25. Асмолов В. Г., Кухтевич И. В., Безлепкин В. В. и др. Концепция локализации расплава кориума на внекорпусной стадии запроектной аварии АЭС с ВВЭР-1000. Сб. тр. научно-практического семинара "Вопросы безопасности АЭС с ВВЭР. Исследования процессов при запроектных авариях с разрушением активной зоны", Т. 1 (С.-Петербург, 12 - 14 сентября 2000 г.) c. 23.

26. Alexiades V., Solomon A. D. Mathematical modeling of melting and freezing processes (USA: Hemisphere Publishing Corporation, 1993) 275 р.

27. Bonacina C., Comini G., Fasano A., Primicerio M. Numerical solution of phase-change problems. Int. J. of Heat and Mass Transfer 16 (1983) 1825. https://doi.org/10.1016/0017-9310(73)90202-0

28. Crank J. Free and moving boundary problems (Oxford: University Press, 1984) 423 р.