![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Modeling of spreading of the melted corium jet inside the pool of emergency heat removal during severe accidents at NPP
I. V. Kazachkov, O. V. Konoval
Nizhyn Mykola Gogol State University, Nizhyn, Ukraine
Abstract: Important nuclear power safety problem in touch with modeling of melted corium jet spreading inside the coolant pool is considered in the paper. Such task appears in development of the passive protection systems against severe accidents. The non-linear mathematical developed model is presented for the jet under reactor vessel pool for one of the perspective passive protection systems and the results of its analysis and studies are given. The performed analysis and the results of the numerical simulation done on the base of the model have allowed establishing the interesting behaviors of the system, which may be useful for the scientists, as well as the engineers-constructors of the passive protection systems against severe accidents.
Keywords: severe accident, jet, corium, pool, mathematical model, non-linearity.
References:1. Sehgal B. R. et al. Experiments and analyses of melt jet impingement during severe accidents. Proc. NUTHOS-5 (Beijing, China, 1997).
2. Sehgal B. R., Nourgaliev R. R., Dinh T. N., Karbojian A. K. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test. Proc. of the Workshop on "Severe Accident Research in Japan, SARJ98" (Japan, 1998).
3. Sehgal B. R., Nourgaliev R. R., Dinh T. N. Characterization of heat transfer processes in a melt pool convection and vessel-creep experiment. NURETH-9 (San Francisco, 1999).
4. Haraldsson H. O., Kazachkov I. V., Dinh T. N., Sehgal B. R. Analysis of thin jet breakup length in immiscible fluids. Abstracts of the 3rd Int. Conf. on Advances in Fluid Mechanics, 24 - 26 May, 2000 (Montreal, Canada, 2000).
5. Казачков И. В. Современное состояние и некоторые проблемы моделирования тяжелых аварий на зарубежных АЭС. Ядерная и радиационная безопасность 1 (2003) 25.
6. Казачков И. В., Могаддам Али Хасан. Моделирование теплогидравлических процессов при тяжелых авариях на АЭС (Київ: НТУУ "КПИ", 2008) 172 с.
7. Могаддам Али Хасан, Казачков И. В. Удержание кориума в контейнменте в тяжелых авариях на АЭС. Енергетика: економіка, технології, екологія 2 (2007) 13.
8. Park H. S., Kazachkov I. V., Sehgal B. R. et al. Analysis of Plunging Jet Penetration into Liquid Pool in Isothermal Conditions. ICMF 2001: Fourth Int. Conf. on Multiphase Flow, May 27 - June 1, 2001 (New Orleans, Louisiana, USA) p. 65.
9. Pilch M. M. et al. The probability of containment failure by direct containment heating in Zion. NUREG. CR-6075, Sand93-1535 (1993). https://doi.org/10.2172/10106618
10. Takumi K. et al. Results of recent NUPEC hydrogen related tests. Water Reactor Safety Information Meeting (Washington D.C., 1993).
11. Dorofeev S. et al. Flame acceleration limits for nuclear safety applications. CSARP Meeting (New Mexico, 1999).
12. Berthoud G., Brayer C. First vapor explosion calculations performed with the MC3D code. Proc. CSNI specialists Meeting on FCIs (Tokai, Japan, 1997).
13. Theofanous T. G., Yuen W. W., Freeman K., Chen X. Propagation of steam explosions: ESPROSE.m verification studies, DOE/ID-10503 (1996).
14. Sehgal B. R. et al. Core Melt Pressure Vessel Interactions During a Light Water Reactor Severe Accident (MVI Project). Proc. of FISA-99 Meeting of EU Research on Severe Accidents (1999).
15. Sehgal B. R., Bui V. A., Dinh T. N., Nourgaliev R. R. Heat transfer processes in reactor vessel lower plenum during late phase of in-vessel core melt progression. Advances in Nuclear Science and Technology (1999) p. 103. https://doi.org/10.1007/0-306-47088-8_5
16. Asmolov V. V. Latest findings of RASPLAV Project. Proc. OECD/CSNI workshop on in-vessel core debris retention and coolability (1998).
17. Huhtiniemi I., Magallon D. Insight into steam explosions with corium melts in KROTOS. Proc. NURETH-9 (1999).
18. Kazachkov I. V. Konovalikhin M. J., Sehgal B.R. Coolability of melt pools and debris beds with bottom injection. 2nd Japanese-European Two-Phase Flow Group Meeting (Tsukuba, Japan, 2000) p. 90.
19. Konovalikhin M. J., Kazachkov I. V., Sehgal B. R. A model of the steam flow through the volumetrically heated saturated particle bed. ICMF 2001: Fourth Int. Conf. on Multiphase Flow, May 27 - June 1, 2001 (New Orleans, Louisiana, USA) p. 37.
20. Kazachkov I. V., Konovalikhin M. J. Steam flow through the volumetrically heated particle bed. Int. J. of Thermal Sciences 41 (2002) 1077. https://doi.org/10.1016/S1290-0729(02)01394-7
21. Alsmeyer H., Farmer M., Ferderer F. et al. The COMET-Concept for Cooling of Ex-Vessel Corium Melts. CD-ROM: Proc. of ICONE-6 (San Diego, California, 1998) p. 437.
22. Калванд Али, И. В. Казачков. Особенности процессов плавления-затвердевания при погружении блоков в расплав высокотемпературного кориума. Ядерна фізика та енергетика 10 (2009) 178. https://jnpae.kinr.kyiv.ua/10.2/Articles_PDF/jnpae-2009-10-0178-Kalvand.pdf
23. Takada Shoji. Research and development on passive cooling system. Nuclear Engineering and Design 233 (2004) 185. https://doi.org/10.1016/j.nucengdes.2004.08.008
24. Gorislavets Yu. M., Kazachkov I. V., Kolesnichenko A. F. et al. Controlled Decomposition of Liquid Metal Jets and Films in Technological and Power Devices. Liquid Metal Magnetohydrodynamics (Holland: Kluwer Acad. Publ., 1989) p. 293. https://doi.org/10.1007/978-94-009-0999-1_36
25. Колесниченко А. Ф., Казачков И. В., Водянюк В. О., Лысак Н. В. Капиллярные МГД-течения со свободными границами (Київ: Наук. думка, 1988) 176 с.
26. Могаддам Вахид Хасани, Казачков И. В. О моделировании изгибных возмущении струй расплава в подреакторном бассейне с водой при тяжелой аварии на АЭС. Ядерна фізика та енергетика 10 (2009) 293. https://jnpae.kinr.kyiv.ua/10.3/Articles_PDF/jnpae-2009-10-0293-Moghaddam.pdf
27. Могаддам Вахид Хасани, Казачков И. В. Моделирование струй расплава в испаряющемся охладителе. Енергетика: економіка, технології, екологія 1 (2010) 86.
28. Могаддам Вахид Хасани, Казачков И. В. Моделирование проникания струй кориума в подреакторный бассейн с испаряющимся охладителем. Ядерна фізика та енергетика 11 (2010) 151. https://jnpae.kinr.kyiv.ua/11.2/Articles_PDF/jnpae-2010-11-0151-Moghaddam.pdf
29. Лаврентьев M. A., Шабат Б. В. Проблемы гидродинамики и их математические модели (Москва: Наука, 1973).
30. Eichelberger R. J. Experimental Test of the Theory of Penetration by Metallic Jets. J. Appl. Physics 27 (1956) 1. https://doi.org/10.1063/1.1722198
31. Кинеловский С. А., Маевский К. К. Проникание кумулятивных струй в твердую преграду. Журнал прикладной механики и технической физики (1989) 2.
32. Sachdev P. L. Non-linear ordinary differential equations and their applications (N.Y. - Basel - Hong Kong - Marcel: Dekker Inc., 1991) 578 р.
33. Turner J. S. J. Fluid Mech. 26 (1966) 779. https://doi.org/10.1017/S0022112066001526
34. Dahlsveen J., Kristoffersen R., Saetran L. Jet mixing of cryogen and water. 2nd Int. Symp. "Turbulence and Shear Flow Phenomena", June 27 - 29, 2001, Vol. 2 (Stockholm, Sweden: Kungliga Tekniska Högskolan (KTH), 2001) p. 329. https://doi.org/10.1615/TSFP2.1290