![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Bumping structure of initial energy density distributions and peculiarities of pion spectra in A + A collisions
M. S. Borysova1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The effect of a fluctuating bumping structure of the initial conditions on spectra and the collective evolution of matter created in heavy-ion collisions in the frameworks of the Hydro-Kinetic Model is investigated. As motivated by the glasma-flux-tube scenario, the initial conditions are modeled by the set of four high energy-density tube-like fluctuations with longitudinally homogeneous structure within some space-rapidity region in a boost-invariant 2D geometry. It was found that the presence of transversally bumping tube-like fluctuations in initial conditions strongly affects the hydrodynamic evolution and leads to emergence of conspicuous structures in the calculated pion spectra. It was observed that the 4 tube initial configuration generates a four-peak structure in the final azimuthal distributions of one-particle spectra.
Keywords: nucleus-nucleus collisions, hydrodynamics, fluctuating initial conditions, pion spectrum.
References:1. Horner M. G. [STAR Collaboration]. Low- and intermediate-pT di-hadron distributions in Au + Au collisions at sqrt(sNN) = 200 GeV from STAR. J. Phys. G: Nucl. Part. Phys. 34 (2007) S995. https://doi.org/10.1088/0954-3899/34/8/S142
2. Putschke J. [for the STAR collaboration]. Near-side Δη Correlations of High pT Hadrons from STAR. Nucl. Phys. A 783 (2007) 507. https://doi.org/10.1016/j.nuclphysa.2006.11.105
3. Putschke J. [for the STAR collaboration]. Intra-jet correlations of high-pt hadrons from STAR. J. Phys. G: Nucl. Part. Phys. 34 (2007) S679. https://doi.org/10.1088/0954-3899/34/8/S72
4. McCumber M. P. [for the PHENIX Collaboration]. The 'shoulder' and the 'ridge' in PHENIX. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104081. https://doi.org/10.1088/0954-3899/35/10/104081
5. Wenger E. [for the PHOBOS Collaboration]. High pT triggered Δη, Δφ correlations over a broad range in Δη J. Phys. G: Nucl. Part. Phys. 35 (2008) 104080. https://doi.org/10.1088/0954-3899/35/10/104080
6. Alver B., Back B. B., Baker M. D. et al. [PHOBOS Collaboration]. High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au + Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. Lett. 104 (2010) 062301. https://doi.org/10.1103/PhysRevLett.104.062301
7. Daugherity M. [for the STAR Collaboration]. Anomalous centrality variation of minijet angular correlations in Au-Au collisions at 62 and 200 GeV from STAR. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104090. https://doi.org/10.1088/0954-3899/35/10/104090
8. Khachatryan V., Sirunyan A. M., Tumasyan A. et al. [STAR Collaboration]. Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP 09 (2010) 91; arXiv:1009.4122v1 [hep-ex]. https://doi.org/10.1007/JHEP09%282010%29091
9. Gavin S., McLerran L., Moschelli G. Long range correlations and the soft ridge in relativistic nuclear collisions. Phys. Rev. C 79 (2009) 051902; arXiv:0806.4718 [nucl-th]. https://doi.org/10.1103/PhysRevC.79.051902
10. Armesto N., Salgado C. A., Wiedemann U. A. et al. Measuring The Collective Flow With Jets. Phys. Rev. Lett. 93 (2004) 242301; arXiv:hep-ph/0405301. https://doi.org/10.1103/PhysRevLett.93.242301
11. Romatschke P. Momentum Broadening in an Anisotropic Plasma. Phys.Rev. C 75 (2007) 014901; arXiv: hep-ph/0607327. https://doi.org/10.1103/PhysRevC.75.014901
12. Majumder A., Muller B., Bass S. A. Longitudinal Broadening of Quenched Jets in Turbulent Color Fields. Phys. Rev. Lett. 99 (2007) 042301; arXiv:hep-ph/0611135. https://doi.org/10.1103/PhysRevLett.99.042301
13. Wong C. Y. Ridge structure in the Δφ-Δη correlation function associated with a near-side jet. Phys. Rev. C 76 (2007) 054908; arXiv:0707.2385. https://doi.org/10.1103/PhysRevC.76.054908
14. Chiu C. B., Hwa R. C. Pedestal and Peak Structure in Jet Correlation. Phys. Rev. C 72 (2005) 034903; arXiv:nucl-th/0505014. https://doi.org/10.1103/PhysRevC.72.034903
15. Voloshin S. A. Transverse radial expansion in nuclear collisions and two particle correlations. Phys. Lett. B 632 (2006) 490; arXiv:nucl-th/0312065. https://doi.org/10.1016/j.physletb.2005.11.024
16. Shuryak E. V. On the Origin of the "Ridge" phenomenon induced by Jets in Heavy Ion Collisions. Phys. Rev. C 76 (2007) 047901; arXiv:0706.3531. https://doi.org/10.1103/PhysRevC.76.047901
17. Schenke B., Dumitru A., Nara Y. et al. QGP collective effects and jet transport. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104109. https://doi.org/10.1088/0954-3899/35/10/104109
18. Dumitru A., Gelis F., McLerran L., Venugopalan R. Glasma flux tubes and the near side ridge phenomenon at RHIC. Nucl. Phys. A 810 (2008) 91. https://doi.org/10.1016/j.nuclphysa.2008.06.012
19. Alver B., Back B. B., Baker M. D. et al. [PHOBOS Collaboration]. System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sqrt(sNN) = 200 GeV. Phys. Rev. C 81 (2010) 024904; arXiv:0812.1172. https://doi.org/10.1103/PhysRevC.81.024904
20. Moschelli G., Gavin S. Soft Contribution to the Hard Ridge in Relativistic Nuclear Collisions. arXiv:0910.3590v2. https://doi.org/10.1016/j.nuclphysa.2009.12.064
21. Hirano T., Tsuda K. Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out. Phys. Rev. C 66 (2002) 054905. https://doi.org/10.1103/PhysRevC.66.054905
22. Nonaka C., Bass S. A. Space-time evolution of bulk QCD matter. Phys. Rev. C 75 (2007) 014902. https://doi.org/10.1103/PhysRevC.75.014902
23. Hama Y., Andrade R. P. G., Grassi F. et al. NeXSPheRIO results on Elliptic-Flow Fluctuations at RHIC. Phys. Atom. Nucl. 71 (2008) 1558. https://doi.org/10.1134/S106377880809010X
24. Andrade R. P. G., Grassi F., Hama Y. et al. Importance of Granular Structure in the Initial Conditions for the Elliptic Flow. Phys. Rev. Lett. 101 (2008) 112301. https://doi.org/10.1103/PhysRevLett.101.112301
25. Aguiar C. E., Hama Y., Kodama T., Osada T. Smoothed particle hydrodynamics for relativistic heavy-ion collisions. J. Phys. G 27 (2001) 75. https://doi.org/10.1088/0954-3899/27/1/306
26. Aguiar C. E., Hama Y., Kodama T., Osada T. Entropy-based relativistic smoothed particle hydrodynamics. J. Phys. G 27 (2001) 551. https://doi.org/10.1088/0954-3899/27/3/336
27. Aguiar C. E., Hama Y., Kodama T., Osada T. Event-by-event fluctuations in hydrodynamical description of heavy-ion collisions. Nucl. Phys. A 698 (2002) 639. https://doi.org/10.1016/S0375-9474(01)01447-6
28. Petersen H., Steinheimer J., Burau G. et al. Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78 (2008) 044901. https://doi.org/10.1103/PhysRevC.78.044901
29. Werner K., Karpenko Iu., Pierog T. et al. Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82 (2010) 044904; arXiv:1004.0805. https://doi.org/10.1103/PhysRevC.82.044904
30. Andrade R. P. G., Grassi F., Hama Y., Qian W. -L. Hydrodynamics: Fluctuating Initial Conditions and Two-particle Correlations. Nucl. Phys. A 854 (2011) 81. https://doi.org/10.1016/j.nuclphysa.2010.08.004
31. Shuryak E. Fate of the initial state perturbations in heavy ion collisions. Phys. Rev. C 80 (2009) 069902. https://doi.org/10.1103/PhysRevC.80.069902
32. Borysova M. S., Sinyukov Yu. M., Karpenko Iu. A. Fluctuations In Initial Energy Density Distributions In A + A Collisions. Nucl. Phys. At. Energy 11 (2010) 269. https://jnpae.kinr.kyiv.ua/11.3/Articles_PDF/jnpae-2010-11-0269-Borysova.pdf
33. Borysova M. S., Sinyukov Yu. M., Karpenko Iu. A. Evolution of energy density fluctuations in A + A collisions. arXiv:1102.2084v1 [nucl-th]. https://doi.org/10.1134/S154747711109007X
34. Akkelin S. V., Hama Y., Karpenko Iu., Sinyukov Yu. M. Hydro-kinetic approach to relativistic heavy ion collisions. Phys. Rev. C 78 (2008) 034906. https://doi.org/10.1103/PhysRevC.78.034906
35. Sinyukov Yu. M., Karpenko Iu. A., Nazarenko A. V. Spacetime scales and initial conditions in relativistic A + A collisions. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104071. https://doi.org/10.1088/0954-3899/35/10/104071
36. Borysova M. S., Sinyukov Yu. M., Akkelin S. V. et al. Hydrodynamic source with continuous emission in Au + Au at sqrt(s) = 200 GeV. Phys. Rev. C 73 (2006) 024903. https://doi.org/10.1103/PhysRevC.73.024903