Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2012, volume 13, issue 1, pages 39-45.
Section: Nuclear Physics.
Received: 10.10.2011; Published online: 30.03.2012.
PDF Full text (en)
https://doi.org/10.15407/jnpae2012.01.039

Bumping structure of initial energy density distributions and peculiarities of pion spectra in A + A collisions

M. S. Borysova1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The effect of a fluctuating bumping structure of the initial conditions on spectra and the collective evolution of matter created in heavy-ion collisions in the frameworks of the Hydro-Kinetic Model is investigated. As motivated by the glasma-flux-tube scenario, the initial conditions are modeled by the set of four high energy-density tube-like fluctuations with longitudinally homogeneous structure within some space-rapidity region in a boost-invariant 2D geometry. It was found that the presence of transversally bumping tube-like fluctuations in initial conditions strongly affects the hydrodynamic evolution and leads to emergence of conspicuous structures in the calculated pion spectra. It was observed that the 4 tube initial configuration generates a four-peak structure in the final azimuthal distributions of one-particle spectra.

Keywords: nucleus-nucleus collisions, hydrodynamics, fluctuating initial conditions, pion spectrum.

References:

1. Horner M. G. [STAR Collaboration]. Low- and intermediate-pT di-hadron distributions in Au + Au collisions at sqrt(sNN) = 200 GeV from STAR. J. Phys. G: Nucl. Part. Phys. 34 (2007) S995. https://doi.org/10.1088/0954-3899/34/8/S142

2. Putschke J. [for the STAR collaboration]. Near-side Δη Correlations of High pT Hadrons from STAR. Nucl. Phys. A 783 (2007) 507. https://doi.org/10.1016/j.nuclphysa.2006.11.105

3. Putschke J. [for the STAR collaboration]. Intra-jet correlations of high-pt hadrons from STAR. J. Phys. G: Nucl. Part. Phys. 34 (2007) S679. https://doi.org/10.1088/0954-3899/34/8/S72

4. McCumber M. P. [for the PHENIX Collaboration]. The 'shoulder' and the 'ridge' in PHENIX. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104081. https://doi.org/10.1088/0954-3899/35/10/104081

5. Wenger E. [for the PHOBOS Collaboration]. High pT triggered Δη, Δφ correlations over a broad range in Δη J. Phys. G: Nucl. Part. Phys. 35 (2008) 104080. https://doi.org/10.1088/0954-3899/35/10/104080

6. Alver B., Back B. B., Baker M. D. et al. [PHOBOS Collaboration]. High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au + Au Collisions at sqrt(sNN) = 200 GeV. Phys. Rev. Lett. 104 (2010) 062301. https://doi.org/10.1103/PhysRevLett.104.062301

7. Daugherity M. [for the STAR Collaboration]. Anomalous centrality variation of minijet angular correlations in Au-Au collisions at 62 and 200 GeV from STAR. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104090. https://doi.org/10.1088/0954-3899/35/10/104090

8. Khachatryan V., Sirunyan A. M., Tumasyan A. et al. [STAR Collaboration]. Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP 09 (2010) 91; arXiv:1009.4122v1 [hep-ex]. https://doi.org/10.1007/JHEP09%282010%29091

9. Gavin S., McLerran L., Moschelli G. Long range correlations and the soft ridge in relativistic nuclear collisions. Phys. Rev. C 79 (2009) 051902; arXiv:0806.4718 [nucl-th]. https://doi.org/10.1103/PhysRevC.79.051902

10. Armesto N., Salgado C. A., Wiedemann U. A. et al. Measuring The Collective Flow With Jets. Phys. Rev. Lett. 93 (2004) 242301; arXiv:hep-ph/0405301. https://doi.org/10.1103/PhysRevLett.93.242301

11. Romatschke P. Momentum Broadening in an Anisotropic Plasma. Phys.Rev. C 75 (2007) 014901; arXiv: hep-ph/0607327. https://doi.org/10.1103/PhysRevC.75.014901

12. Majumder A., Muller B., Bass S. A. Longitudinal Broadening of Quenched Jets in Turbulent Color Fields. Phys. Rev. Lett. 99 (2007) 042301; arXiv:hep-ph/0611135. https://doi.org/10.1103/PhysRevLett.99.042301

13. Wong C. Y. Ridge structure in the Δφ-Δη correlation function associated with a near-side jet. Phys. Rev. C 76 (2007) 054908; arXiv:0707.2385. https://doi.org/10.1103/PhysRevC.76.054908

14. Chiu C. B., Hwa R. C. Pedestal and Peak Structure in Jet Correlation. Phys. Rev. C 72 (2005) 034903; arXiv:nucl-th/0505014. https://doi.org/10.1103/PhysRevC.72.034903

15. Voloshin S. A. Transverse radial expansion in nuclear collisions and two particle correlations. Phys. Lett. B 632 (2006) 490; arXiv:nucl-th/0312065. https://doi.org/10.1016/j.physletb.2005.11.024

16. Shuryak E. V. On the Origin of the "Ridge" phenomenon induced by Jets in Heavy Ion Collisions. Phys. Rev. C 76 (2007) 047901; arXiv:0706.3531. https://doi.org/10.1103/PhysRevC.76.047901

17. Schenke B., Dumitru A., Nara Y. et al. QGP collective effects and jet transport. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104109. https://doi.org/10.1088/0954-3899/35/10/104109

18. Dumitru A., Gelis F., McLerran L., Venugopalan R. Glasma flux tubes and the near side ridge phenomenon at RHIC. Nucl. Phys. A 810 (2008) 91. https://doi.org/10.1016/j.nuclphysa.2008.06.012

19. Alver B., Back B. B., Baker M. D. et al. [PHOBOS Collaboration]. System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sqrt(sNN) = 200 GeV. Phys. Rev. C 81 (2010) 024904; arXiv:0812.1172. https://doi.org/10.1103/PhysRevC.81.024904

20. Moschelli G., Gavin S. Soft Contribution to the Hard Ridge in Relativistic Nuclear Collisions. arXiv:0910.3590v2. https://doi.org/10.1016/j.nuclphysa.2009.12.064

21. Hirano T., Tsuda K. Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out. Phys. Rev. C 66 (2002) 054905. https://doi.org/10.1103/PhysRevC.66.054905

22. Nonaka C., Bass S. A. Space-time evolution of bulk QCD matter. Phys. Rev. C 75 (2007) 014902. https://doi.org/10.1103/PhysRevC.75.014902

23. Hama Y., Andrade R. P. G., Grassi F. et al. NeXSPheRIO results on Elliptic-Flow Fluctuations at RHIC. Phys. Atom. Nucl. 71 (2008) 1558. https://doi.org/10.1134/S106377880809010X

24. Andrade R. P. G., Grassi F., Hama Y. et al. Importance of Granular Structure in the Initial Conditions for the Elliptic Flow. Phys. Rev. Lett. 101 (2008) 112301. https://doi.org/10.1103/PhysRevLett.101.112301

25. Aguiar C. E., Hama Y., Kodama T., Osada T. Smoothed particle hydrodynamics for relativistic heavy-ion collisions. J. Phys. G 27 (2001) 75. https://doi.org/10.1088/0954-3899/27/1/306

26. Aguiar C. E., Hama Y., Kodama T., Osada T. Entropy-based relativistic smoothed particle hydrodynamics. J. Phys. G 27 (2001) 551. https://doi.org/10.1088/0954-3899/27/3/336

27. Aguiar C. E., Hama Y., Kodama T., Osada T. Event-by-event fluctuations in hydrodynamical description of heavy-ion collisions. Nucl. Phys. A 698 (2002) 639. https://doi.org/10.1016/S0375-9474(01)01447-6

28. Petersen H., Steinheimer J., Burau G. et al. Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78 (2008) 044901. https://doi.org/10.1103/PhysRevC.78.044901

29. Werner K., Karpenko Iu., Pierog T. et al. Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82 (2010) 044904; arXiv:1004.0805. https://doi.org/10.1103/PhysRevC.82.044904

30. Andrade R. P. G., Grassi F., Hama Y., Qian W. -L. Hydrodynamics: Fluctuating Initial Conditions and Two-particle Correlations. Nucl. Phys. A 854 (2011) 81. https://doi.org/10.1016/j.nuclphysa.2010.08.004

31. Shuryak E. Fate of the initial state perturbations in heavy ion collisions. Phys. Rev. C 80 (2009) 069902. https://doi.org/10.1103/PhysRevC.80.069902

32. Borysova M. S., Sinyukov Yu. M., Karpenko Iu. A. Fluctuations In Initial Energy Density Distributions In A + A Collisions. Nucl. Phys. At. Energy 11 (2010) 269. https://jnpae.kinr.kyiv.ua/11.3/Articles_PDF/jnpae-2010-11-0269-Borysova.pdf

33. Borysova M. S., Sinyukov Yu. M., Karpenko Iu. A. Evolution of energy density fluctuations in A + A collisions. arXiv:1102.2084v1 [nucl-th]. https://doi.org/10.1134/S154747711109007X

34. Akkelin S. V., Hama Y., Karpenko Iu., Sinyukov Yu. M. Hydro-kinetic approach to relativistic heavy ion collisions. Phys. Rev. C 78 (2008) 034906. https://doi.org/10.1103/PhysRevC.78.034906

35. Sinyukov Yu. M., Karpenko Iu. A., Nazarenko A. V. Spacetime scales and initial conditions in relativistic A + A collisions. J. Phys. G: Nucl. Part. Phys. 35 (2008) 104071. https://doi.org/10.1088/0954-3899/35/10/104071

36. Borysova M. S., Sinyukov Yu. M., Akkelin S. V. et al. Hydrodynamic source with continuous emission in Au + Au at sqrt(s) = 200 GeV. Phys. Rev. C 73 (2006) 024903. https://doi.org/10.1103/PhysRevC.73.024903