= РАДІОБІОЛОГІЯ ТА РАДІОЕКОЛОГІЯ =

УДК 574:539.1.04:621.039.586

Ю. А. Иванов¹, С. Е. Левчук¹, С. И. Киреев², М. Д. Бондарьков³, Ю. В. Хомутинин¹

¹ Украинский НИИ сельскохозяйственной радиологии НУБиП Украины, Чабаны ² Чернобыльский радиоэкологический центр, Чернобыль ³ Международная радиоэкологическая лаборатория, Славутич

ПОДВИЖНОСТЬ РАДИОНУКЛИДОВ ВЫБРОСА ЧАЭС В ПОЧВАХ ОТЧУЖДЕННЫХ ТЕРРИТОРИЙ

Проанализированы и обобщены некоторые результаты изучения многолетней динамики миграционной подвижности радионуклидов выброса ЧАЭС в почвах отчужденных территорий. Оценена роль физико-химических характеристик выпадений, ландшафтно-геохимических условий территории. Показана принципиально иная динамика миграции ⁹⁰Sr в почвах на следах топливных выпадений ЧАЭС по сравнению с таковой ¹³⁷Cs.

Ключевые слова: зона отчуждения ЧАЭС, вертикальный перенос радионуклидов, многолетняя динамика, физико-химические формы выпадений, периоды полуочищения почвы.

Введение

Существенные различия физико-химических форм выпадений выброса ЧАЭС и их пространственного распределения на территории, контрастность характеристик почвенно-растительного покрова [1, 2] предопределили различную динамику трансформации радиоактивных выпадений и миграционной подвижности радионуклидов в почвах на разных следах выпадений.

Одной из важных радиоэкологических задач на поздней фазе аварии является оценка динамики миграционной подвижности радионуклидов в почве. Изменение или постоянство параметров переноса радионуклидов в почвах предопределяет адекватность прогнозных оценок миграционной подвижности и биологической доступности радионуклидов, проспективных оценок доз облучения населения при его реэвакуации на отчужденные территории после проведения реабилитационных мероприятий.

Для оценки миграционной подвижности радионуклидов в 1986 - 1987 гг. на различных следах выпадений аварийного выброса ЧАЭС была организована сеть экспериментальных площадок. Наблюдения за интенсивностью вертикальной миграции радионуклидов в почвах проводили исходя из следующих критериев: 1) ландшафтно-геохимические условия территории; 2) тип угодий (старопахотные почвы, почвы с естественным сложением профиля); 3) физикохимические свойства выпадений (соотношение топливной (ТК) и конденсационной (КК) компонент выпадений); 4) плотность загрязнения территории долгоживущими радионуклидами.

Часть экспериментальных площадок располагалась на территории, подверженной интенсивному протеканию автореабилитационных процессов [3]. Вследствие интенсивного самозалесения и закустаривания указанных площадок отбор проб почвы через 15 - 20 лет после периода выпадений был невозможен.

Целью статьи является обобщение полученных авторами за поставарийный период результатов изучения динамики миграционной подвижности радионуклидов выброса в почве, оценок роли физико-химических форм выпадений и ландшафтно-геохимических условий среды миграции радионуклидов.

Материалы и методы

Для оценки вертикального переноса радионуклидов в почве использованы результаты натурных исследований на экспериментальных площадках УНИИСХР [4], Международной радиоэкологической лаборатории [5], ландшафтных полигонах Чернобыльского радиоэкологического центра [6], модельно-полевого [7] и модельных колоночных экспериментов УНИИСХР [8].

Значения параметров переноса радионуклидов в профиле почвы рассчитывали с использованием конвективно-диффузионной модели переноса [9]. В основе модели лежит допущение о пространственной и временной однородности слоя почвы, в котором рассматривается процесс миграции. При нулевых начальных условиях (выпадения на поверхность почвы) и заданных потоках радионуклида на границах модель имеет аналитическое решение, которое использовалось в работе для оценки ее параметров. Оценка проводилась с использованием экспериментальных данных по вертикальному распределению радионуклидов в почве на основе метода наимень-

> © Ю. А. Иванов, С. Е. Левчук, С. И. Киреев, М. Д. Бондарьков, Ю. В. Хомутинин, 2011

ших квадратов. Оценки проводили с использованием разработанной в УНИИСХР компьютерной программы [10].

Результаты и обсуждение

Многолетние комплексные исследования вертикального переноса радионуклидов выброса ЧАЭС в почвах, включающие наблюдения *in situ*, модельные лабораторные эксперименты и математическое моделирование позволили выявить ряд особенностей миграции радионуклидов, определяющих динамику формирования радиационной ситуации на территории, подвергшейся радиоактивному загрязнению, а также оценить факторы, определяющие эти особенности.

В 1986 - 1988 гг. интенсивность переноса в профиле почвы радиоизотопов различных химических элементов (цезия, церия, стронция и др.) были в основном близкими независимо от соотношения топливной и конденсационной компонент выпадений на следах выброса. Это, очевидно, связано с механическим переносом этих радионуклидов в составе топливных частиц, В 1989 г. дифференциация распределения радионуклидов увеличилась [2], проявление влияния химических свойств радионуклидов и физикохимических особенностей почв стало более отчетливым.

Перенос в почвах радионуклидов в составе топливных частиц

Выпадения выброса ЧАЭС в ближней зоне были представлены как радионуклидами, депонированными в матрице топливных частиц, так и радионуклидами конденсационной компоненты. Таким образом, вертикальный перенос радионуклидов в почве происходил как в ионной форме (в почвенном растворе), так и виде топливных частиц. С течением времени роль последнего снижалась в связи с деструкцией и растворением частиц.

Результаты модельных колоночных экспериментов [8] позволили оценить эффективные параметры переноса в контрастных по свойствам почвах радионуклидов, депонированных в матрице топливных частиц выброса ЧАЭС (табл. 1).

Таблица 1. Оценки эффективных коэффициентов диффузии ¹³⁷Cs, ¹⁴⁴Ce и ¹⁰⁶Ru, содержащихся в матрице топливных частиц, и ⁹⁰Sr в исходной водорастворимой форме, см²·год⁻¹ [8]

Радионуклид	Дерново-подзолистая песчаная почва	Дерново-подзолистая супесчаная почва	Торфяно-болотная почва
¹³⁷ Cs	0,012	0,016	0,016
¹⁴⁴ Ce	0,016	0,013	0,022
¹⁰⁶ Ru	0,012	0,014	0,012
Среднее ± СКО	$0,014 \pm 0,003$	$0,014 \pm 0,001$	$0,014 \pm 0,004$
⁹⁰ Sr	6,9	0,44	0,19

Оценки эффективных параметров вертикального переноса радионуклидов на топливных следах выпадений в натурных условиях, рассчитанные на основе данных наблюдений *in situ*, варыруют в широких пределах ($D_{3\phi} = 0,0n - n \text{ см}^2 \cdot \text{год}^{-1}$) [4]. Эти данные вкупе с результатами колоночных экспериментов о вертикальном распределении в профиле почв топливных частиц различного размера (см. табл. 1) позволяют сделать вывод о преимущественной миграции радионуклидов, депонированных в матрице топливных частиц, путем механического переноса последних в почве.

На основе результатов модельных экспериментов сделаны оценки интенсивности вертикального переноса топливных частиц в почвах [8]. Для гипотетической ситуации, в которой топливные частицы не разрушаются, оценки экологического периода их полувыведения из верхнего 5-сантиметрового горизонта почв (Т_{экол} (5 см)) лугов, сформированных на типичных для Украинского полесья минеральных и органогенных почвах, составляет 2050 - 2250 лет, что превышает оценки $T_{_{3KOЛ}}$ (5 см) 90 Sr и 137 Cs в природных условиях на 1 - 2 порядка величин.

Миграционная подвижность радионуклидов на топливных следах выпадений

Проведен анализ профилей распределения ⁹⁰Sr, ¹³⁷Cs, ¹⁵⁴Eu, ²⁴¹Am и ^{239,240}Pu в почвах на топливных следах выпадений в зоне отчуждения ЧАЭС в 2001 - 2003 гг., на полигонах Международной радиоэкологической лаборатории [5]. Оценки экологических периодов полуочищения 5-сантиметровых горизонтов контрастных по свойствам почв от указанных радионуклидов варьируют в пределах 21 - 230, 25 - 300, 25 - 460 и 100 - 260 лет соответственно [11]. Оценки распределений изотопных отношений радионуклидов в профиле почв представлены на рис. 1.

Рис. 1. Значения изотопных отношений радионуклидов в профиле различных почв на топливном следе выпадений (экспериментальный участок «Рыжий лес»): I – 0 - 2 см; II – 2 - 4 см; III – 4 - 7 см; IV – 7 - 10 см; V – 10 -15 см; VI – 15 - 20 см; VII – 20 - 25 см; VIII – 25 - 30 см; k – отношение суммарных активностей радионуклидов в профиле в целом.

Значения изотопного отношения 90 Sr/ 154 Eu в почвах увеличивается с глубиной почвенного профиля, т.е. в целом 90 Sr мигрируют существенно быстрее, чем 154 Eu. Отмечено снижение значений изотопного отношения 137 Cs/ 90 Sr в почвах с увеличением глубины почвенного профиля, что показывает более высокую скорость вертикального переноса в почвенном профиле 90 Sr по сравнению с 137 Cs, что полностью подтверждает оценки параметров переноса этих радионуклидов в почвах. Вместе с тем значения изотопных отношений 241 Am/ 154 Eu и 239 , 240 Pu/ 154 Eu в почвах очень мало изменяется с глубиной почвенного профиля, т.е. 241 Am и изотопы плутония мигрирует существенно медленнее в сравнении с 90 Sr и 137 Cs.

Таким образом, на топливных следах выпадений по состоянию на 1990 - 1992 гг. в соответствии с миграционной подвижностью радионуклиды можно расположить в ряд: 90 Sr > 137 Cs $\ge {}^{241}$ Am $\approx {}^{239,240}$ Pu.

Миграционная подвижность радионуклидов в различных ландшафтно-геохимических условиях

Миграционная подвижность ⁹⁰Sг и ¹³⁷Cs существенно зависит от ландшафтных условий территории. Оценки периодов полуочищения верхних горизонтов почв ландшафтных полигонов от радионуклидов, рассчитанные нами на основе экспериментальных данных Чернобыльского радиоэкологического центра [6], представлены в табл. 2.

Значения экологического периода полуочищения верхнего 5-сантиметрового слоя почвы по состоянию на 1998 - 2002 гг. для ⁹⁰Sг изменяются от 10,5 - 20,5 лет: в условиях элювиальных, аккумулятивно-элювиальных и трансэлювиальных ландшафтов (дерново-подзолистые почвы легкого механического состава, абсолютная отметка 136 - 156 м) до 0,7 - 4,8 года в условиях транссупераквальных ландшафтов (дерново-подзолистые почвы легкого механического состава, торфяно-болотные почвы, абсолютная отметка 106,5 - 110,5 м). Оценки экологического периода полуочищения верхнего 5-сантиметрового слоя почвы от ¹³⁷Cs для тех же условий меняются от 40 - 78 до 12 - 18 лет. Полученные оценки, на наш взгляд, свидетельствуют о том, что положение участка территории в ландшафте и, соответственно, водный режим почвы может оказывать большее влияние на интенсивность вертикального переноса радионуклидов, чем физико-химические характеристики почв.

Поняниофт	Абсолютная	Понра	Тэкол	¹³⁷ Cs	Тэко	$_{\rm DD}^{90}{\rm Sr}$
ландшафт	отметка, м	ПОчва	5 см	10 см	5 см	10 см
Элювиальный автономный,	110,8 - 156,1	Дерново-	40 - 92	240 - 460	10 - 21	60 - 210
кумулятивно-элювиальный,		подзолистая				
трансэдювиальный,		пылевато-				
транссуперэлювиальный		песчаная,				
пойменный		дерново-				
		подзолистая				
		песчаная,				
		торфяно-				
		болотная				
Транссупераквальный	106,5 - 108,1	Дерновая	12 - 18	70 - 90	0,7 - 4,8	3,9 - 28
пойменный		пылевато-				
		песчаная,				
		торфяно-				
		болотная				

Таблица 2. Значения периодов полуочищения верхних горизонтов почв ландшафтных полигонов от ¹³⁷Cs и ⁹⁰Sr на поздней фазе аварии (1998 - 2002 гг.)

Многолетняя динамика вертикального переноса ⁹⁰Sr и ¹³⁷Cs в почвах

Проанализированы результаты исследований вертикального переноса ⁹⁰Sr и ¹³⁷Cs в почвах экспериментальных площадок, заложенных в 1986 -1987 гг. на различных следах выпадений аварийного выброса ЧАЭС. Указанные площадки расположены на различном расстоянии и в различных направлениях от аварийного блока ЧАЭС (рис. 2). Площадки различаются характеристиками почвенно-растительного покрова (в период аварии - естественные и искусственные луговые фитоценозы, пахотные почвы; контрастные по физико-химическим и водно-физическим свойствам почвы; существенно различные физикохимические свойства выпадений и плотность загрязнения).

Рис. 2. Схема расположения экспериментальных площадок УНИИСХР (П) и ландшафтных площадок Чернобыльского радиоэкологического центра на различных следах выпадений аварийного выброса ЧАЭС.

Оценки распределения ¹³⁷Сѕ в профиле почв на территории зоны отчуждения свидетельствуют, в целом, о невысокой интенсивности вертикального переноса радионуклида в почвах. Через 21 год после выпадений в верхнем 5-сантиметровом горизонте почв лугов, сформированных на автоморфных минеральных почвах, депонировано 90 - 97 % суммарной активности радионуклида в профиле. Более интенсивный перенос радионуклида отмечен для лугов, сформированных на гидроморфных органогенных почвах, где через указанный промежуток времени в верхнем 5-сантиметровом горизонте почв находится 50 - 89 % радионуклида. Через 22 года после внесения в почву ¹³⁷Сѕ в водорастворимой форме из пахотных горизонтов контрастных по физико-химическим свойствам почв было вынесено: дерново-подзолистые песчаные, супесчаные и легкосуглинистые - 50 - 60 % радионуклида; серые лесные и черноземы средне- и тяжелосуглинистые – 10 - 40 % радионуклида (без учета физического распада).

Существенно более интенсивным переносом в профиле почв характеризуется ⁹⁰Sr. Уже через 5-6 лет после выпадений в верхнем 5-сантиметровом горизонте почв лугов было депонировано 65 - 91 % радионуклида от его содержания в профиле, через 9 лет – 46 - 88 %, а через 21 год – от 85 до 32 % и менее. Максимальная интенсивность переноса отмечена для лугов, сформированных на автоморфных минеральных почвах. Превалирующая доля ⁹⁰Sr в выпадениях была депонирована в топливных частицах, что существенно модифицировало поведение радионуклида в почве и почвенно-растительном покрове территорий в течение ряда лет после периода выпадений. Через 21 год после внесения в почву ⁹⁰Sr в водорастворимой форме из пахотных горизонтов контрастных по физико-химическим почв было вынесено: дерновосвойствам подзолистые песчаные, супесчаные и легкосуглинистые – 50 - 80 % радионуклида; серые средне- и тяжелосуглинистые лесные 16 - 30 % радионуклида (без учета физического распада). Экстремально высокой миграционной подвижностью характеризуется ⁹⁰Sr в слабогумусированных песках - за 21 год после внесения в почву из пахотного горизонта было вынесено около 98 %.

Расчетные значения параметров вертикального переноса (коэффициент диффузии D и скорость направленного переноса V) ¹³⁷Cs ⁹⁰Sr и в профиле почвы экспериментальных площадок и значения периода полуочищения верхних горизонтов почвы в различные периоды времени после выпадений выброса приведены в табл. 3 и 4. Отмечено снижение миграционной подвижности ¹³⁷Cs в почвах со временем (см. рис. 2), что определяется в первую очередь существенным и быстрым снижением пула мобильных форм радионуклида (в первые годы после выпадений период полуснижения содержания мобильных форм $T_{\mu MMO6} = 0.8 - 2.8$ года).

На топливных следах выпадений в течение 5 - 20 лет отмечено увеличение мобильности ⁹⁰Sr (см. рис. 2), что определяется, по меньшей мере, двумя факторами: деструкцией топливных частиц, в которых радионуклид был депонирован в период выпадений; медленным снижением во времени пула мобильных форм ⁹⁰Sr ($T_{иммоб} = 25 - 55$ лет).

Пределы варьирования T_{3KOT} (5 см) ¹³⁷Cs для лугов, сформированных на автоморфных минеральных почвах легкого механического состава, на 21-м году после периода выпадений составляют 160 - 430 лет; на гидроморфных органогенных почвах – 50 - 300 лет, что существенно выше аналогичных оценок для периода 6 - 9 лет после выпадений (рис. 3).

Пределы варьирования T_{3KOJ} (5 см) ⁹⁰Sr для 21-го года после аварии составляют для минеральных почв легкого механического состава 11 - 20 лет, а для гидроморфных органогенных почв – 8 - 30 лет (см. рис. 3).

Приведенные оценки убедительно свидетельствуют о существенном замедлении процесса вертикальной миграции ¹³⁷Cs в почвах лугов на поздней фазе аварии. Абсолютные величины экологического периода полуочищения верхнего 5-сантиметрового горизонта почвы более чем на порядок величины превышает величину физического периода полураспада радионуклида (30,17 лет), т.е. на поздней фазе аварии изменение мощности экспозиционной дозы излучения, формируемой депонированным в почве ¹³⁷Сs, определяется только скоростью физического распада радионуклида. Это, безусловно, должно учитываться при подготовке прогнозных оценок, в том числе проспективных оценок дозовых нагрузок на гипотетическое население в случае его реэвакуации на отчужденные территории.

Физико-химические формы выпадений вкупе с почвенными условиями определяют принципиально иную динамику миграции ⁹⁰Sr в почвах и включения радионуклида в биогеохимические цепи миграции на следах топливных выпадений ЧАЭС по сравнению с глобальными выпадениями и выпадениями других крупных радиационных аварий (например, на Восточно-Уральском радиоактивном следе).

	Bnews			Экологичесн	кий период	Эффективн	ый период
Площадка	после выпадений,	Параметр	ы переноса	полуочищени слоя п	ия верхнего очвы	полуочищен. слоя п	ия верхнего очвы
	лет	$D, cm^2 \cdot rog^{-1}$	V, $cM \cdot rod^{-1}$	T_{3KOII} (5 cm)	$T_{3 ko \pi}(10 \text{ cm})$	$T_{a\phi}(5 cm)$	$T_{a\phi}$ (5 cm)
	2,33	$0,22\pm0,03$	$0,06\pm0,01$				
аныи луг. почва дерново- јесчаная. Лернина рыхлая.	4,58	$0,11\pm0,02$	$0,09\pm0,01$	50 - 16**	100 ± 00*	100±10*	
HHAR.	5,17	$0,24\pm0,04$	$0,02\pm0,01$	01 H 60	06 I 061	1 <i>2</i> ,0 ⊥ 1,0	0,7 H 6,07
грязнения:	6,17	$0,17\pm0,02$	$0,02\pm0,01$				
[bk ⋅ M ⁻² ;	7,17	$0,20\pm0,03$	<0,001				
t M ∩ ⊃C × 1	9,17	$0,19\pm0,04$	<0,001	148 ± 20	880 ± 40	$25,1\pm1,0$	$29,2\pm0,2$
	9,4	$0,20\pm0,04$	<0,001				
нный сильно увлажненный	6,25	$0,44\pm0,10$	<0,001	- 15	02 - 300		101100
рфянистая. Дернина плотная.	7,17	$0,46\pm0,09$	<0,001	C1 ± C0	01 ± CCC	∠U,U ± U, I	∠0,1 ± 0,1
рязнения: гг2.	9,17	$0,21\pm0,06$	$0,012\pm0,006$	21 + JC1	600±130	743±05	
	9,4	$0,24\pm0,06$	<0,001	CT 7 071	0C1 ± 000	C,U ∃ C,42	∠0,7 ± U,2
HAGC	21,4	$0,09\pm0,02$	<0,001	300 ± 50	1700 ± 200	$26,1\pm1,1$	$29,7 \pm 1,1$
нный луг. Почва дерново-	2,17	$0,19\pm0.03$	$0,23\pm0,04$				
есчаная. Дернина рыхлая,	5,5	$0,08\pm0,01$	$0,08\pm0,02$	15 - 0		<u> </u>	
нная.	6,25	0.07 ± 0.01	$0,13\pm0,02$	4.0 日 4	AU ± 20	1,1 ± C,11	$22,0 \pm 1,4$
разпония. БК · M ⁻² :	7,17	0.05 ± 0.01	$0,09\pm0,02$				
$\mathbf{K} \cdot \mathbf{M}^{-2}$;	9,17	$0,09\pm0,01$	$0,03\pm0,03$	140 ± 25	330 ± 70	$25,1\pm1,7$	$27,7\pm1.9$
ЧАЭС	21,3	$0,07\pm0,01$	$0,02\pm0,002$	330 ± 60	1280 ± 200	$26,3\pm1,2$	$28,4\pm1,2$
:	1,42	$0,31\pm0,04$	$0,14\pm0,04$	16 ± 12	さん 干 グロ	170+270	
ипрующийся на дерново- мпесианой почвет пахотной	4,58	$0,13\pm0,02$	$0,08\pm0,02$	CT - 0+	C7 - 0C	11,7 ± 2,0	V, - 1, - 2
	6,25	$0,15\pm0,03$	$0,003 \pm 0,001$		720 ± 30	35 () ± () 8	10 + 01
рязнения:	7,17	$0,23\pm0,03$	<0,001		00 - 071	0,0 - 0,02	Z7,0 - 0,1
Mbĸ · M ⁻ ; dEray ⁻² .	8,25	$0,13\pm0,03$	<0,001	175 ± 20			
AGC , MJR	9,17	$0,13\pm0,02$	<0,001		1200 ± 200	$26,3\pm0,4$	$29,4\pm0,1$
	21,3	$0,16\pm0,03$	<0,001				

Таблица 3. Динамика изменения параметров вертикального переноса ¹³⁷Cs в профиле почвы экспериментальных площадок и значения периода полуочищения верхних горизонтов почвы

Продолжение табл. 3

	Время после	Параметрі	ы переноса	Экологичесн	сий период ия верхнего	Эффективн полуочищен	ый период ия верхнего
Площадка	выпадений,			п копо	очвы	слоя п	04Bbl
	лет	D, см ² ·год ⁻¹	V, см·год ⁻¹	$T_{3kon}(5 cm)$	$T_{ m _{3KOII}}(10~cm)$	$T_{a\phi}(5 cm)$	$T_{a\phi}$ (5 cm)
П 5. Луг. формирующийся на дерново-	1,42	$0,17\pm0,03$	$0,09\pm0,02$				
подзолистой глееватой почве, пахотной	4,58	$0,13\pm0,02$	$0,10\pm0,02$	51 ± 2	110 ± 25	18.9 ± 0.2	$23,5\pm0,3$
перед аварией. Плотность загрязнения:	6,25	$0,11\pm0,01$	$0,10\pm0,03$				
137 Cs 3,2±0,1 MEk·M ⁻² ; 90 Sr 2,0 ± 0,1 MEk·M ⁻² ;	7,17	$0,19\pm0,02$	<0,001				
4 км севернее ЧАЭС. В настоящее время – бенеровое неписталие	9,17	$0,19\pm0,03$	<0,001	150 ± 10	890 ± 30	$25,2\pm0,1$	$29,2\pm0,1$
	21,3	$0,21\pm0,03$	<0,001				
П 6. Луг, формирующийся на дерново-	1,42	$0,19\pm0,03$	<0,001	160 ± 30	950 ± 100	$25,3\pm0,7$	$29,3\pm0.7$
подзолистой оглеенной почве, пахотной	4,58	$0,14\pm0,02$	$0,06\pm0,02$				
перед авариеи. дернина рыхлая. Плотность загрязнения	6,25	0.05 ± 0.01	$0,18\pm0,4$	52 ± 12	120 ± 30	18.5 ± 2.0	$23,2\pm1,8$
37 Cs 3.9 + 0.2 MEk · M^{-2} .	7,17	$0,28\pm0,04$	$0,07\pm0,02$				
90 Sr 2,4 ± 0,1 MBk · M^{-2} ; 4 km cebephee	8,25	$0,11\pm0,01$	<0,001				
ЧАЭС. В настоящее время – березовое	9,17	$0,11\pm0,02$	<0,001	230 ± 40	1200 ± 200	26.5 ± 0.7	$29,3\pm0,3$
редколесье	21,3	0.23 ± 0.04	<0,001				
П 7 Естественный пут сильного увлаж-	1,42	$0,34\pm0,07$	<0,001				
нения. Почва дерновая оглеенная. Дернина	4,42	$0,30\pm0,07$	<0,001				
плотная. Плотность загрязнения:	6,25	$0,41\pm0,10$	<0,001	79 ± 6	470 ± 50	$21,8\pm0,4$	$28,3 \pm 0,4$
12 /Cs 1,4 ± 0,3 MBk · M ⁻² ;	7,17	$0,44\pm0,10$	<0,001				
\sim Sr 0,8 \pm 0,2 MbK · M ⁻ ;	8,25	0.33 ± 0.05	0.01 ± 0.002				
о км северо-восточнее 1АЭС В настоящее время сильно закустарен	9,17	$0,13\pm0,03$	<0,001	320 + 30	1300 + 100	765+03	39.4 ± 0.1
	9,4	$0,15\pm0,03$	<0,001	07 - 011		0,0 - 0,07	L,U - L,/2
П 8. Луг. формирующийся на дерново-	1,25	$0,23\pm0,04$	$0,024\pm0,007$				
подзолистой супесчаной почве, пахотной	4,58	$0,14\pm0,01$	$0,05\pm0,01$	81 + 17	230 + 80	21.2 + 1.8	25.4 ± 1.7
перед аварией. Дернина рыхлая, слабо	5,5	$0,07\pm0,01$	$0,046 \pm 0,015$				
выраженная. Плотность загрязнения:	6,25	$0,09\pm0,02$	$0,9\pm0,02$				
$^{-0}$ CS 4,4 ± 0,2 [MBK · M ⁻ ; 90 Cr 2 8 ± 1 0 MEr $^{-1}$.	7,17	$0,12\pm0,02$	<0,001	330 + 30	1330 + 110	767+07	395 + 01
$12 \times 0 \pm 1.0 \text{ IMBA} \cdot \text{M}$, $12 \times 2.0 \pm 1.0 \text{ IMBA}$	9,17	$0,14\pm0,01$	0,001			-0.1 - 0.2	
	21,3	0.07 ± 0.02	<0,001	430 ± 50	2100 ± 200	$28,1\pm0,6$	$29,8\pm0,6$

^{*} Оценки плотности загрязнения приведены по состоянию на май 1986 г. ** Среднее значение для соответствующего периода времени.

			2			
Время после	 Параметрь	ы переноса	Экологический пері верхнего сі	иод полуочищения 10я почвы	Эффективный пери верхнего с	юд полуочищения лоя почвы
выпадении, лет	$\mathrm{D,cm}^2\cdot\mathrm{rog}^{-1}$	V, $cM \cdot rod^{-1}$	$T_{3kon}(5 cm)$	$T_{3kon}(10 \text{ cm})$	$T_{a\phi}(5 cm)$	T_{ab} (5 cm)
5,25	$0,31 \pm 0,07$	<0,001	$92 \pm 22^*$	470 ± 110	$21,5\pm0,2$	$26,5\pm0,2$
9,40	$2,67 \pm 0,41$	<0,001	$11,2 \pm 3,1$	68 ± 23	$8,0\pm0.2$	$19,9\pm0,4$
10,4	$1,9\pm0,20$	<0,001	$15,6 \pm 3,0$	95 ± 25	$10,0\pm0.6$	$21,7 \pm 2,3$
9,40	 $0,30 \pm 0,05$	<0,001	99 ± 24	590 ± 120	$21,9\pm0.9$	$26,8\pm1,5$
21,3	$0,98 \pm 0,11$	<0,001	$30,5 \pm 4,5$	182 ± 24	$14,6\pm0,8$	$24,4\pm1,3$
21,3	$0,04 \pm 0,02$	$0,004 \pm 0,002$	540 ± 210	2500 ± 1100	$28,3\pm1,7$	$29,8 \pm 1,4$
4,58	0.59 ± 0.14	0.59 ± 0.15	$8,6\pm1,9$	$17,3 \pm 2,1$	$6,6\pm0,4$	$10,7\pm0,7$
9,17	$1,06 \pm 0,22$	$0,002 \pm 0,001$	$27,5 \pm 4,2$	140 ± 20	13.9 ± 0.8	$23,4\pm1,2$
21,3	$0,42 \pm 0,11$	<0,001	71 ± 14	440 ± 120	$20,1\pm0,3$	$26,4\pm0,3$
4,58	$2,14 \pm 0,25$	<0,001	$13,8\pm1,9$	78 ± 23	$9,3\pm0,2$	$20,7\pm0.5$
9,17	$0,67\pm0,14$	$0,002 \pm 0,001$	42.5 ± 5.3	200 ± 45	16.9 ± 0.3	$24,6\pm0,3$
21,3	$2,26\pm0,27$	<0,001	$13,6 \pm 2,0$	83 ± 17	$9,1\pm0,3$	$20,8\pm0,4$
21,3	3.52 ± 0.90	<0,001	$11,2\pm1,4$	68 ± 18	$7,6\pm0,7$	$18,7\pm09$
9,4	$0,96 \pm 0,21$	<0,001	31 ± 4	190 ± 30	$14,7\pm0,8$	$24,5\pm1,1$
6,25	$0,29\pm0,05$	<0,001	100 ± 20	500 ± 130	$22,0\pm1,7$	$26,6\pm1,9$
9,17	$0,35\pm0,06$	$0,003 \pm 0,001$	76 ± 15	330 ± 40	20.5 ± 1.4	$25,9\pm1,6$
21,3	 $1,68 \pm 0,21$	<0,001	$18,1\pm2,5$	110 ± 20	$11,0\pm0.7$	$22,3 \pm 0,8$

Таблица 4. Динамика изменения параметров вертикального переноса ⁹⁰Sr в профиле почвы экспериментальных площадок и значения периода полуочищения верхних горизонтов почвы

* Среднее значение для соответствующего периода времени.

Рис. 3. Динамика значений T_{3KOR} (5 см) 90 Sr (*a*) и 137 Cs (*б*) в почвах зоны отчуждения ЧАЭС.

Выводы

1. На основе результатов многолетних исследований оценена динамика вертикальной миграции радионуклидов в почвах лугов зоны отчуждения ЧАЭС. Рассчитаны параметры переноса ¹³⁷Cs и ⁹⁰Sr, оценены значения экологического и эффективного периодов полуочищения верхних горизонтов почвы от указанных радионуклидов.

2. Миграционная подвижность радионуклидов в почвах лугов зоны отчуждения снижается в ряду: 90 Sr > 137 Cs ≥ 241 Am ≈ 239,240 Pu.

3. Показано существенное замедление процесса вертикальной миграции ¹³⁷Cs в почвах лугов на поздней фазе аварии. Средние оценки $T_{3кол}$ ¹³⁷Cs для лугов, сформированных на автоморфных минеральных почвах легкого механического состава, на 21 году после периода выпадений составляют 180 - 320 лет; для лугов, сформированных на гидроморфных органогенных почвах – 90 - 110 лет, что существенно выше аналогичных оценок для периода 6 - 9 лет после выпадений.

4. Абсолютные величины T_{3KO7} ¹³⁷Cs в 3 - 7 раз превышают величину физического распада радионуклида, т.е. на поздней фазе аварии изменение мощности экспозиционной дозы излучения, формируемой депонированным в почве ¹³⁷Cs, определяется только скоростью физического распада радионуклида. Это, безусловно, должно учитываться при подготовке прогнозных оценок, в том числе проспективных оценок дозовых нагрузок на гипотетическое население в случае его резвакуации на отчужденные территории.

5. Для большинства лугов, сформированных на автоморфных минеральных почвах легкого механического состава, интенсивность переноса ¹³⁷Cs в пределах ошибки значимо не различается, что свидетельствует о нивелировании роли физико-химических свойств почв на интенсивность вертикальной миграции радионуклида на поздней фазе аварии.

6. Положение участка территории в ландшафте и, соответственно, водный режим почвы может оказывать большее влияние на интенсивность вертикального переноса радионуклидов, чем физико-химические характеристики почв.

7. Физико-химические формы выпадений вкупе с почвенными условиями определяют принципиально иную динамику миграции ⁹⁰Sr в почвах и включения радионуклида в биогеохимические цепи миграции на следах топливных выпадений ЧАЭС по сравнению с аналогичными характеристиками ¹³⁷Cs выпадений.

СПИСОК ЛИТЕРАТУРЫ

- Kashparov V.A. Hot particles at Chernobyl // Environmental Science and Pollution Research. 2003. -Vol. 1. - P. 21 - 30.
- Ivanov Yu.A., Kashparov V.A. Long-term dynamics of radioecological situation in terrestrial ecosystems on the territory of exclusion zone // Ibid. - P. 13 - 20.
- Шестопалов В.М., Францевич Л.І., Балашов Л.С. та ін. Автореабілітаційні процеси в екосистемах Чорнобильської зони відчуження / Відп. ред. Ю. О. Іванов, В. В. Долін. - К., 2001, - 251 с.
- 4. Иванов Ю.А., Кашпаров В.А., Левчук С.Е. и др. Вертикальный перенос радионуклидов выброса

ЧАЭС в почвах. 1. Долговременная динамика перераспределения радионуклидов в профиле почв in situ // Радиохимия. 1996. - Т. 38, вып. 3. - С. 264 - 271.

- 5. *Иванов Ю.А.* Анализ факторов, определяющих долговременную динамику миграции радионуклидов в почвенно-растительном покрове // Проблемы Чернобыльской зоны отчуждения. - 2009. - № 9. - С. 23 - 39.
- 6. Бондаренко О.О., Вишневський Д.О., Годун Б.О. та ін. // Бюлетень екологічного стану зони відчуження та зони безумовного (обов'язкового) відсе-

лення. № 31. - К.: Чорнобильінтерінформ, 2008. - С. 3 - 22.

- Бондарь П.Ф., Лощилов Н.А., Дутов А.И. и др. Общие закономерности загрязнения продукции растениеводства на территории, подвергшейся радиоактивному загрязнению в результате аварии на ЧАЭС // Проблемы сельскохозяйственной радиологии: Сб. науч. тр. / Под ред. Н. А. Лощилова. -К., 1991. - С. 88 - 105.
- Ivanov Yu. Migration of fuel particles of CHNPP fallout and leached radionuclides in soils and soil-toplant system // Radioactive Particles in the Environment / Eds. D. H. Oughton, V. Kashparov. -Springer Science + Business Media B.V., 2009. -P. 123 - 137.
- Прохоров В.М. Миграция радиоактивных загрязнений в почвах. Физико-химические механизмы и моделирование / Под ред. Р. М. Алексахина. - М.: Энергоиздат, 1981. - 98 с.
- Левчук С.Е., Лощилов Н.А., Кашпаров В.А. и др. Пакет прикладных программ по прогнозированию вертикальной миграции радионуклидов // Проблемы сельскохозяйственной радиологии: Сб. науч. тр. / Под ред. Н. А. Лощилова. - К., 1993. - Вып. 3. - С. 3 - 7.
- Бондарьков М.Д., Желтоножская М.В., Гащак С.П. и др. Вертикальная миграция радионуклидов на исследовательских полигонах Чернобыльской зоны // Проблеми безпеки атомних електростанцій і Чорнобиля. - 2006. - Вип. 6. - С. 155 - 163.

Ю. О. Іванов, С. Є. Левчук, С. І. Кірсєв, М. Д. Бондарьков, Ю. В. Хомутінін

РУХЛИВІСТЬ РАДІОНУКЛІДІВ ВИКИДУ ЧАЕС У ҐРУНТАХ ВІДЧУЖЕНИХ ТЕРИТОРІЙ

Проаналізовано та узагальнено деякі результати вивчення багаторічної динаміки міграційної рухливості радіонуклідів викиду ЧАЕС у ґрунтах відчужених територій. Оцінено роль фізико-хімічних характеристик випадінь, ландшафтно-геохімічних умов території. Показано принципово іншу динаміку міграції ⁹⁰Sr в ґрунтах на слідах паливних випадінь ЧАЕС у порівнянні з такою ¹³⁷Cs.

Ключові слова: зона відчуження ЧАЕС, вертикальне перенесення радіонуклідів, багаторічна динаміка, фізико-хімічні форми випадінь, періоди напівочищення грунту,

Yu. O. Ivanov, S. E. Levchuk, S. I. Kireev, M. D. Bondarkov, Yu.V. Khomutinin

MOBILITY OF ChNPP RELEASE RADIONUCLIDES IN SOILS OF ABANDONED AREAS

Some results on long-term dynamics of migration movability of ChNPP release radionuclides in soils of abandoned areas have been analyzed and summarized. Role of physical-chemical forms of fallout as well as landscape-geochemical characteristics of the territory has been estimated. Dynamics of ⁹⁰Sr migration in soils of fuel tracks of ChNPP fallout is in the main difference in comparison with ¹³⁷Cs.

Keywords: ChNPP Exclusion zone, radionuclide vertical transfer, long-term dynamics, physical-chemical forms of fallout, half-time of soil cleaning.

Поступила в редакцию 07.07.11, после доработки - 20.11.11.