Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 3, pages 246-254.
Section: Radiation Physics.
Received: 04.04.2011; Published online: 30.09.2011.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2011.03.246

Degradation of quantum dots and change of their energy spectra in semimagnetic semiconductors under nuclear irradiation

G. V. Vertsimakha, V. V. Mykhaylovskyy, V. Y. Sugakov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Spreading of the potential profile for the charge carriers in quantum dots in binary semiconductors and the shift of the quantum levels for electrons, holes and excitons under the nuclear irradiation has been investigated. The spreading occurs because of the redistribution of atoms of different kinds between the barrier and quantum dot due to radiation-enhanced diffusion. It is shown that in semimagnetic semiconductors (e.g. CdTe/(Cd, Mn)Te), in which a giant magnetic splitting of exciton levels exists, the redistribution of magnetic ions under irradiation causes significant increase in the splitting of exciton levels in a magnetic field in a quantum dot.

Keywords: radiation-enhanced diffusion, quantum dots, semimagnetic semiconductors.

References:

1. Withers N. J., Sankar K., Akins B. A. et al. Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation. Appl. Phys. Lett. 93 (2008) 173101. https://doi.org/10.1063/1.2978073

2. Guffarth F., Heitz R., Geller M. et al. Radiation hardness of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 82 (2003) 1941. https://doi.org/10.1063/1.1561165

3. Cress C. D., Hubbard S. M., Landi B. J. et al. Quantum dot solar cell tolerance to alpha-particle irradiation. Appl. Phys. Lett. 91 (2007) 183108. https://doi.org/10.1063/1.2803854

4. Sands D., Howari H. The kinetics of point defects in low-power pulsed laser annealing of ion-implanted CdTe/CdMnTe double quantum well structures. J. Appl. Phys. 98 (2005) 083506. https://doi.org/10.1063/1.2102068

5. Howari H., Sands D., Nicholls J. E. et al. Excimer laser induced diffusion in magnetic semiconductor quantum wells. J. Appl. Phys. 88 (2000) 1373. https://doi.org/10.1063/1.373826

6. Комаров А. В., Рябченко С. М., Терлецкий О. В. и др. Магнитооптические исследования и двойной оптико-магнитный резонанс экситонной полосы в CdTe:Mn. ЖЭТФ 73 (1979) 608.

7. Gaj J. A., Planel R., Fishman G. Relation of magneto-optical properties of free excitons to spin alignment of Mn2+ ions in Cd1-xMnxTe. Solid State Commun. 29 (1979) 435. https://doi.org/10.1016/0038-1098(79)91211-0

8. Wojnar P., Suffczynski J., Golnik A. et. al. Fabrication and luminescence properties of self-assembled CdTe quantum dots embedded in an MnTe matrix. Phys. Rev. B 80 (2009) 195321. https://doi.org/10.1103/PhysRevB.80.195321

9. Hundt A., Puls J., Henneberger F. Spin properties of self-organized diluted magnetic Cd1-xMnxSe quantum dots. Phys. Rev. B 69 (2004) 121309. https://doi.org/10.1103/PhysRevB.69.121309

10. Верцімаха Г. В., Михайловский В. В., Сугаков В. Й. Деградація квантових ям та зміна енергетичних спектрів у напівпровідниках під дією опромінення. Зб. наук. праць Ін-ту ядерних досл. 6 (2005) 97. https://jnpae.kinr.kyiv.ua/06.2/Articles_PDF/jnpae-2005-06-2-097.pdf

11. Верцімаха Г. В., Михайловский В. В., Сугаков В. Й. Магнітна залежність екситонних спектрів у квантових ямах опромінених напівмагнітних напівпровідників. Ядерна фізика та енергетика 9 (2008) 69. https://jnpae.kinr.kyiv.ua/23(1)/Articles_PDF/jnpae-2008-1(23)-0069-Vertsimakha.pdf

12. Russell K. C. Phase stability under irradiation. Progress in Materials Science 28 (1984) 229. https://doi.org/10.1016/0079-6425(84)90001-X

13. Furdyna J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64 (1998) R29. https://doi.org/10.1063/1.341700

14. Tonnies D., Bather G., Forchel A. et al. Photoluminescence study of strong interdiffusion in CdTe/CdMnTe quantum wells induced by rapid thermal annealing. Appl. Phys. Lett. 64 (1994) 766. https://doi.org/10.1063/1.111006

15. Barcz A., Karczewski G., Wojtowicz T., Kossut J. Manganese diffusion in MBE-grown Cd(Mn) Te structures. J. Crystal Growth 159 (1996) 980. https://doi.org/10.1016/0022-0248(95)00840-3

16. Grill R., Turjanska L., Franc J. et al. Chemical Self-Diffusion in CdTe. phys. stat. sol. (b) 229 (2002) 161. https://doi.org/10.1002/1521-3951(200201)229:1%3C161::AID-PSSB161%3E3.0.CO;2-3

17. Gaj J. A., Grishaber W., Bodin-Deshayes C. et al. Magneto-optical study of interface mixing in the CdTe-(Cd,Mn)Te system. Phys. Rev. B 50 (1994) 5512. https://doi.org/10.1103/PhysRevB.50.5512

18. Ossau W., Fiederling R., Konig B. et. al. Non-diagonal Transitions in Semimagnetic Quantum Wells with Parabolic and Half-Parabolic Confining Potentials. Phys. Low.-Dim. Struct. 11/12 (1997) 89.

19. Kayanuma Y., Momiji H. Incomplete confinement of electrons and holes in microcrystals. Phys. Rev. B 41 (1990) 10261. https://doi.org/10.1103/PhysRevB.41.10261