Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Selected physics measurements for the LHCb experiment and the radiation monitoring system
V. M. Iakovenko1,2, O. Yu. Okhrimenko1, V. M. Pugatch1, S. Barsuk2, M.-H. Schune2
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud 11, Orsay, France
Abstract: The LHCb experiment at the Large Hadron Collider (LHC) is dedicated to studies of rare phenomena in b- and c-decays in order to precisely constrain the Standard Model parameters and search for beyond Standard Model signatures. The LHCb detector is fully installed and commissioned; first data from pp collisions are being experienced. Physics performance of the LHCb experiment in constraining Standard Model parameters is illustrated with the expected reach on the CKM angle measurements, Bd,s mixing phases and the angle γ of unitarity triangle. New physics search in the b-sector is discussed at the examples of rare decays Bs → μ+μ- and B → K* μ+μ-, as well as photon helicity studies in the B0s → φγ mode. Radiation level measurement for the silicon inner tracker operation and beam condition monitoring with the Radiation Monitoring System, developed at Kyiv Institute for Nuclear Research, are discussed.
Keywords: LHCb experiment, CP violation, B0s-meson radiative decay, radiation monitoring system.
References:1. Bona M., Ciuchini M., Franco E. et al. [UTfit Collaboration]. www.utfit.org
2. LHCb Collaboration. LHCb Reoptimized Detector Design and Performance: Technical Design Report LHCb. CERN-LHCC-2003-030 137 p.
3. A. A. Alves, L. M. Andarade Filho, A. F. Barbosa, V. M. Iakovenko et al. LHCb collaboration. The LHCb Detector at the LHC. JINST 3 (2008) S08005. https://doi.org/10.1088/1748-0221/3/08/S08005
4. Talanov V. Radiation Environment at the LHCb Inner Tracker Area. CERN-LHCb-Note-2000-013, 21 p.
5. Mangus H. Summary of Simulations for the Beam Conditions Monitor at the LHCb: Thesis. LHCb2008-027 (CERN) (Geneve, 2008) 84 p.
6. Guaglio G. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN: Thesis. CERN-THESIS-2006-012 (Geneve, 2006) 246 p. https://doi.org/10.1063/1.1949526
7. Guaglio G., Dehning B., Santoni C. Reliability Considerations on the LHC Beam Loss Monitors System. AIP Conference Proceedings 773 (2005) 191. https://dx.doi.org/10.1063/1.1949526
8. Guzik Z., Jacobsson R. Beam Phase and Intensity Monitor (BPIM) for the LHCb Experiment. CERNLHCb-2006-055; Proc. 12th Workshop on Electronics for LHC and Future Experiments, Valencia, Spain, 25 - 29 Sep. 2006 (Valencia, 2006) p. 121.
9. M. Agari, V. Iakovenko, O. Okhrimenko, V. Pugatch et al. Radiation Monitoring System for the LHCb Inner Tracker. CERN-LHCb-2007-062, 15 p.
10. Пугач В. М., Охрiменко О. Ю., Яковенко В. М. та iн. Система радiацiйного монiторингу внутрiшнього трекера експерименту LHCb. Український фiзичний журнал 54 (2009) 419.
11. Pugatch V. M., Aushev V. E., Bauer C. et al. Metal Foil Detectors and their applications. Nucl. Instr. Meth. A 535 (2004) 566. https://doi.org/10.1016/j.nima.2004.07.279
12. Schune M.-H. Investigating the physics case of running a B-factory at the Y(5S) resonance: Talk given at the 5th SuperB workshop (Paris, May 9 - 11, 2007).
13. Ligeti Z., Papucci M., Perez G. Implifications of the Measurements of the B0sB0s Mass Difference. Phys. Rev. Lett. 97 (2006) 101801. https://doi.org/10.1103/PhysRevLett.97.101801
14. Cohen S., Merk M., Rodrigues E. γ + φs sensitivity studies from combined B0s → Dsπ+ and B0s → D±sK-+ samples at LHCb. CERN-LHCb-Note-2007-041, 30 p.
15. Gronau M., London D. On determing a weak phase from charged B decay assymetries. Phys. Lett. B 265 (1991) 172. https://doi.org/10.1016/0370-2693(91)90034-N
16. Atwood D., Dunietz I., Soni A. Enhanced CP Violation with B → KD0 Modes and Extraction of the Cabibbo-Kobayashi-Maskawa Angle gamma. Phys. Rev. Lett. 78 (1997) 3257. https://doi.org/10.1103/PhysRevLett.78.3257
17. Giri A., Grossman Yu., Soffer A., Zupan J. Determining γ using B± → DK± with multibody D decays. Phys. Rev. D 68 (2003) 054018. https://doi.org/10.1103/PhysRevD.68.054018
18. Patel M. Including B± → D*K± Decays in the Determination of γ via Atwood-Dunietz-Soni Method at LHCb. LHCb-2007-043, 22 p.
19. Fleischer R. New Strategies to Extract β and γ from Bd → π+π- and Bs → K+K- Phys. Lett. B 459 (1999) 306. https://doi.org/10.1016/S0370-2693(99)00640-1
20. Blanke M., Buras A. J., Guadagnoli D., Tarantino C. Minimal Flavour Violation Waiting for Precise Measurements of ΔMs, Sψφ, ASSL, ❘Vub❘ , γ and B0s,d → μ+μ-. TUM-HEP-626/06; JHEP 10 (2006) 003; arXiv:hep-ph/0604057v5. https://doi.org/10.1088/1126-6708/2006/10/003
21. CDF Collaboration. Search for B0s → μ+μ- and B0 → μ+μ- Decays with 2 fb-1 of pp Collisions. Phys. Rev. Lett. 100 (2008) 101802. https://doi.org/10.1103/PhysRevLett.100.101802
22. B. Adeva, M. Adinolfi, A. Affolder, V. M. Iakovenko et al. LHCb Collaboration. Roadmap for selected key measurements of LHCb. LHCb-PUB2009-029 (Geneve: CERN, 2009) 372 p. arXiv:0912.4179v2.
23. Read A. L. Modified frequentist analysis of search results (the CLs method). CERN Yellow Report 2000-005, 21 p.
24. Egede U. Angular correlations in the B → K*μ+μ- decay. LHCb-2007-057 (CERN) 13 p.
25. Kruger F., Matias J. Probing new physics via the transverse amplitudes of B → K*ℓ+ℓ- at large recoil. Phys. Rev. D 71 (2005) 094009; arXiv:hep-ph/0502060. https://doi.org/10.1103/PhysRevD.71.094009
26. Mohapatra R. N., Pati J. C. Left-right gauge symmetry and an "isoconjugate" model of CP violation. Phys. Rev. D 11 (1975) 566; https://doi.org/10.1103/PhysRevD.11.566
Senjanovic G., Mohapatra R. N. Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D 12 (1975) 1502; https://doi.org/10.1103/PhysRevD.12.1502 Senjanovic G. Spontaneous breakdown of parity in a class of gauge theories. Nucl. Phys. B 153 (1979) 334; https://doi.org/10.1016/0550-3213(79)90604-7 Haber H. E., Kane G. L. The search for supersymmetry: Probing physics beyond the standard model. Phys. Rep. 117 (1985) 75. https://doi.org/10.1016/0370-1573(85)90051-127. Atwood D., Gronay M., Soni A. Mixing-induced CP Asymmetries in Radiative B Decays in and beyond the Standard Model. Phys. Rev. Lett. 79 (1997) 185 [arXiv:hep-ph/9704272]. https://doi.org/10.1103/PhysRevLett.79.185
28. HFAG Collaboration: http://www.slac.stanford.edu/xorg/hfag/
29. Iakovenko V. M. Selection with the DC06 Monte Carlo of the radiative penguin decay Bs → φγ at LHCb. CERN-LHCb-INT-2010-014, 19 p.
30. Amsler C., Doser M., Antonelli M. et al. Review of particle physics (Particle Data Group). Phys. Lett. B 667 (2008) 1. https://doi.org/10.1016/j.physletb.2008.07.018
31. LHC Programme Coordination web page: http://lpc.web.cern.ch/plc/