© 2011 V. M. Iakovenko^{1,2}, O. Yu. Okhrimenko¹, V. M. Pugatch¹, S. Barsuk², M.-H. Schune²

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv ² Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, Orsay, France

SELECTED PHYSICS MEASUREMENTS FOR THE LHCB EXPERIMENT AND THE RADIATION MONITORING SYSTEM

The LHCb experiment at the Large Hadron Collider (LHC) is dedicated to studies of rare phenomena in b-and c-decays in order to precisely constrain the Standard Model parameters and search for beyond Standard Model signatures. The LHCb detector is fully installed and commissioned; first data from pp collisions are being experienced. Physics performance of the LHCb experiment in constraining Standard Model parameters is illustrated with the expected reach on the CKM angle measurements, $B_{d,s}$ mixing phases and the angle γ of unitarity triangle.

New physics search in the *b*-sector is discussed at the examples of rare decays $B_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow K^* \mu^+ \mu^-$, as

well as photon helicity studies in the $B_s^0 \rightarrow \varphi \gamma$ mode. Radiation level measurement for the silicon inner tracker operation and beam condition monitoring with the Radiation Monitoring System, developed at Kiev Institute for Nuclear Research, are discussed.

Keywords: LHCb experiment, CP violation, B⁰_s-meson radiative decay, radiation monitoring system.