Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 2, pages 124-128.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.06.2011.
PDF Full text (en)
https://doi.org/10.15407/jnpae2011.02.124

First results of the experiment to search for 2β decay of 106Cd with the help of 106CdWO4 crystal scintillators

P. Belli1, R. Bernabei1,2, R. S. Boiko3, V. B. Brudanin4, F. Cappella5,6, V. Caracciolo7, R. Cerulli7, D. M. Chernyak3, F. A. Danevich3, S. d'Angelo1,2, A. E. Dossovitskiy8, E. N. Galashov9, A. Incicchitti5,6, V. V. Kobychev3, S. S. Nagorny3, F. Nozzoli1, B. N. Kropivyansky3, V. M. Kudovbenko3, A. L. Mikhlin8, A. S. Nikolaiko3, D. V. Poda3,7, R. B. Podviyanuk3, O. G. Polischuk3, D. Prosperi5,6, V. N. Shlegel9, Yu. G. Stenin9, J. Suhonen10, V. I. Tretyak3, Ya. V. Vasiliev9

1Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
3Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
5Istituto Nazionale di Fisica Nucleare, Sezione Roma "La Sapienza", Rome, Italy
6Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
7Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
8Joint Stock Company NeoChem, Moscow, Russia
9Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
10Department of Physics, University of Jyväskylä, Jyväskylä, Finland

Abstract: An experiment to search for 2β processes in 106Cd with the help of 106CdWO4 crystal scintillator (mass of 215 g), enriched in 106Cd up to 66%, is in progress at the Gran Sasso National Laboratories of the INFN (Italy). After 1320 h of data taking, limits on double beta processes in 106Cd have been established on the level of 1019 - 1020 yr, in particular (all the results at 90% C.L.): T1/2(0ν2ε) > 3.6 · 1020 yr, T1/2(2νεβ+) > 7.2 · 1019 yr, and T1/2(2ν2β+) > 2.5 · 1020 yr. Resonant 0ν2ε processes have been restricted as T1/2(0ν2K) > 1.4 · 1020 yr and T1/2(0νLK) > 3.2 · 1020 yr. A possible resonant enhancement of the 0ν2ε processes is estimated in the framework of the QRPA approach.

Keywords: double beta decay, 106Cd, 106CdWO4 crystal scintillator.

References:

1. Audi G., Wapstra A. H., Thibault C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

2. Bohlke J. K. et al. Isotopic Compositions of the Elements, 2001. J. Phys. Chem. Ref. Data 34 (2005) 57. https://doi.org/10.1063/1.1836764

3. Danevich F. A. et al. Investigation of β+β+ and β+/EC decay of 106Cd. Z. Phys. A 355 (1996) 433. https://doi.org/10.1007/s002180050134

4. Barabash A.S . et al. Theoretical and experimental investigation of the double beta processes in 106Cd. Nucl. Phys. A 604 (1996) 115. https://doi.org/10.1016/0375-9474(96)00138-8

5. Belli P. et al. New limits on 2β+ decay processes in 106Cd. Astropart. Phys. 10 (1999) 115. https://doi.org/10.1016/S0927-6505(98)00034-6

6. Danevich F. A. et al. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C 68 (2003) 035501. https://doi.org/10.1103/PhysRevC.68.035501

7. Rukhadze N. I. et al. Search for double beta decay of 106Cd in TGV-2 experiment. J. Phys. Conf. Ser. 203 (2010) 012072. https://doi.org/10.1088/1742-6596/203/1/012072

8. Suhonen J., Civitarese O. Theoretical results on the double positron decay of 106Cd. Phys. Lett. B 497 (2001) 221. https://doi.org/10.1016/S0370-2693(00)01324-1

9. Hirsch M. et al. Nuclear structure calculation of β+β+ and β+/EC and EC/EC decay matrix elements. Z. Phys. A 347 (1994) 151. https://doi.org/10.1007/BF01292371

10. Staudt A., Muto K., Klapdor-Kleingrothaus H. V. Nuclear matrix elements for double positron emission. Phys. Lett. B 268 (1991) 312. https://doi.org/10.1016/0370-2693(91)91582-G

11. Toivanen J., Suhonen J. Study of several double-beta-decaying nuclei using the renormalized proton-neutron quasiparticle random-phase approximation. Phys. Rev. C 55 (1997) 2314. https://doi.org/10.1103/PhysRevC.55.2314

12. Stoica S., Klapdor-Kleingrothaus H. V. Calculation of the β+β+ and β+/EC and EC/EC half-lives for 106Cd with the second quasi random phase approximation method. Eur. Phys. J. A 17 (2003) 529. https://doi.org/10.1140/epja/i2003-10028-0

13. Shukla A. et al. Two-neutrino positron double-beta decay of 106Cd for the 0+ → 0+ transition. Eur. Phys. J. A 23 (2005) 235. https://doi.org/10.1140/epja/i2004-10084-x

14. Domin P., Kovalenko S., Šimkovic F., Semenov S.V. Neutrino accompanied β±β±, β+/EC and EC/EC processes within single state dominance hypothesis. Nucl. Phys. A 753 (2005) 337. https://doi.org/10.1016/j.nuclphysa.2005.03.003

15. ENSDF at NNDC site. http://www.nndc.bnl.gov/

16. Belli P. et al. Search for double-β decay processes in 108Cd and 114Cd with the help of the low-background CdWO4 crystal scintillator. Eur. Phys. J. A 36 (2008) 167. https://doi.org/10.1140/epja/i2008-10593-6

17. Danevich F.A. et al. α activity of natural tungsten isotopes. Phys. Rev. C 67 (2003) 014310. https://doi.org/10.1103/PhysRevC.67.014310

18. Danevich F. A. et al. Beta decay of 113Cd. Phys. At. Nucl. 59 (1996) 1.

19. Belli P. et al. Investigation of β decay of 113Cd. Phys. Rev. C 76 (2007) 064603. https://doi.org/10.1103/PhysRevC.76.064603

20. Belli P. et al. Development of enriched 106CdWO4 crystal scintillators to search for double β decay processes in 106Cd. Nucl. Instrum. Meth. A 615 (2010) 301. https://doi.org/10.1016/j.nima.2010.01.081

21. Fazzini T. et al. Pulse-shape discrimination with CdWO4 crystal scintillators. Nucl. Instrum. Meth. A 410 (1998) 213. https://doi.org/10.1016/S0168-9002(98)00179-X

22. Bardelli L. et al. Further study of CdWO4 crystal scintillators as detectors for high sensitivity 2β experiments: Scintillation properties and pulse-shape discrimination. Nucl. Instrum. Meth. A 569 (2006) 743. https://doi.org/10.1016/j.nima.2006.09.094

23. Brudanin V. B. et al. Search for double electron capture of 106Cd in TGV-2 experiment. Bull. Russ. Ac. Sci. Phys. 70 (2006) 316.

24. Danevich F. A. et al. The research of 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Lett. B 344 (1995) 72. https://doi.org/10.1016/0370-2693(94)01528-K

25. Danevich F. A. et al. Quest for double beta decay of 160Gd and Ce isotopes. Nucl. Phys. A 694 (2001) 375. https://doi.org/10.1016/S0375-9474(01)00983-6

26. Nelson W. R. et al. The EGS4 code system. SLACReport-265 (Stanford, 1985) 398 p. https://doi.org/10.2172/1453993

27. Bernabeu J., de Rujula A., Jarlskog C. Neutrinoless double electron capture as a tool to measure the electron neutrino mass. Nucl. Phys. B 223 (1983) 15. https://doi.org/10.1016/0550-3213(83)90089-5

28. Sujkowski Z., Wycech S. Neutrinoless double electron capture: A tool to search for Majorana neutrinos. Phys. Rev. C 70 (2004) 052501. https://doi.org/10.1103/PhysRevC.70.052501

29. Suhonen J. Calculation of allowed and first-forbidden beta-decay transitions of odd-odd nuclei. Nucl. Phys. A 563 (1993) 205. https://doi.org/10.1016/0375-9474(93)90602-T

30. Civitarese O., Suhonen J. Two-neutrino double-beta decay to excited one- and two-phonon states. Nucl. Phys. A 575 (1994) 251. https://doi.org/10.1016/0375-9474(94)90188-0