ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Effects of cluster polarizations on the radiative capture reactions 3He(α, γ)7Be, 3H(α, γ)7Li, 6Li (p, γ)7Be and 6Li (n, γ)7Li
V. S. Vasilevsky, A. V. Nesterov, T. P. Kovalenko
M. M. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The microscopic three-cluster model, developed by the authors, was applied to study effects of cluster polarization on the capture reactions 3He(α, γ)7Be, 3H(α, γ)7Li, 6Li(p, γ)7Be and 6Li(n, γ)7Li. These reactions are of great importance for the astrophysical applications. Thus main attention is devoted to the cross section (or astrophysical S factor) of the reactions at the low-energy range. We also study in detail correlations between astrophysical S factor of the reactions at zero energy and different quantities associated with the ground state of compound nucleus.
Keywords: three-cluster model, cluster polarization, capture reaction, astrophysical S factor.
References:1. Angulo C., Arnould M., Rayet M. et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656 (1999) 3. https://doi.org/10.1016/S0375-9474(99)00030-5
2. Adelberger E. G., Austin S. M., Bahcall J. N. A. et al. Solar fusion cross sections. Rev. Mod. Phys. 70 (1998) 1265. https://doi.org/10.1103/RevModPhys.70.1265
3. Bahcall J. N., Pinsonneault M. H. Standard solar models, with and without helium diffusion, and the solar neutrino problem. Rev. Mod. Phys. 64 (1992) 885. https://doi.org/10.1103/RevModPhys.64.885
4. Wallerstein G., Iben I., Parker Jr. P. A. et al. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69 (1997) 995. https://doi.org/10.1103/RevModPhys.69.995
5. Arnould M., Takahashi K. Nuclear astrophysics. Rep. Prog. Phys. 62 (1999) 393. https://doi.org/10.1088/0034-4885/62/3/003
6. Costantini H., Bemmerer D., Confortola F. et al. The 3He(α, γ)7Be S-factor at solar energies: The prompt γ experiment at LUNA. Nucl. Phys. A 814 (2008) 144. https://doi.org/10.1016/j.nuclphysa.2008.09.014
7. Di Leva A., de Cesare M., Schürmann D. et al. Recoil separator ERNA: Measurement of 3He(α, γ)7Be. Nucl. Instrum. Methods Phys. Res. A 595 (2008) 381. https://doi.org/10.1016/j.nima.2008.07.082
8. Cyburt R. H., Davids B. Evaluation of modern 3He(α, γ)7Be data. Phys. Rev. C 78 (2008) 064614. https://doi.org/10.1103/PhysRevC.78.064614
9. Di Leva A., for the ERNA Collaboration. Measurement of the 3He(α, γ)7Be cross section with the recoil separator ERNA. J. Phys. G 35 (2008) 014021. https://doi.org/10.1088/0954-3899/35/1/014021
10. Gyürky G., Bemmerer D., Confortola F. et al Comparison of the LUNA 3He(α, γ)7Be activation results with earlier measurements and model calculations. J. Phys. G 35 (2008) 014002. https://doi.org/10.1088/0954-3899/35/1/014002
11. Brown T. A. D., Bordeanu C., Snover K. A. et al. 3He + 4He ➡ 7Be astrophysical S factor. Phys. Rev. C 76 (2007) 055801. https://doi.org/10.1103/PhysRevC.76.055801
12. Confortola F., Bemmerer D., Costantini H. et al. Astrophysical S factor of the 3He(α, γ)7Be reaction measured at low energy via detection of prompt and delayed γ rays. Phys. Rev. C 75 (2007) 065803. https://doi.org/10.1103/PhysRevC.75.065803
13. Gyürky G., Confortola F., Costantini H. et al. 3He(α, γ)7Be cross section at low energies. Phys. Rev. C 75 (2007) 035805. https://doi.org/10.1103/PhysRevC.75.035805
14. Bemmerer D., Confortola F., Costantini H. et al. Activation Measurement of the 3He(α, γ)7Be Cross Section at Low Energy. Phys. Rev. Lett. 97 (2006) 122502. https://doi.org/10.1103/PhysRevLett.97.122502
15. Costantini H., Bemmerer D., Bezzon P. et al Towards a high-precision measurement of the 3He(α, γ)7Be cross section at LUNA. Eur. J. Phys. A 27 (2006) 177. https://doi.org/10.1140/epja/i2006-08-026-5
16. Nara Singh B. S., Hass M., Nir-El Y., Haquin G. A New Precision Measurement of the 3He(4He, γ)7Be Cross section. Nucl. Phys. A 758 (2005) 689. https://doi.org/10.1016/j.nuclphysa.2005.05.190
17. Singh B. Hass M., Nir-El Y., Haquin G. New Precision Measurement of the 3He(4He, γ)7Be Cross Section. Phys. Rev. Lett. 93 (2004) 262503. https://doi.org/10.1103/PhysRevLett.93.262503
18. Csótó A. and Langanke K. Study of the 3He(4He, γ)7Be and 3H(4He, γ)7Li Reactions in an Extended Two-Cluster Model. Few-Body Syst. 29 (2000) 121. https://doi.org/10.1007/s006010070012
19. Liu Q. K. K., Kanada H., Tang Y. C. Validity of macroscopic models for the 3He(α, γ)7Be electric-dipole capture reaction. Phys. Rev. C 33 (1986) 1561. https://doi.org/10.1103/PhysRevC.33.1561
20. Walliser H., Kanada H., Tang Y. C. Study of the 3He(α, γ)7Be radiative-capture reaction with resonating-group wave functions. Nucl. Phys. A 419 (1984) 133. https://doi.org/10.1016/0375-9474(84)90289-6
21. Arai K., Baye D., Descouvemont P. Microscopic study of the 6Li(p, γ)7Be and 6Li(p, α)3He reactions. Nucl. Phys. A 699 (2002) 963. https://doi.org/10.1016/S0375-9474(01)01298-2
22. Liu Q. K. K., Kanada H., Tang Y. C. Microscopic study of 3He(α, γ)7Be electric-dipole capture reaction. Phys. Rev. 23 (1981) 645. https://doi.org/10.1103/PhysRevC.23.645
23. Kajino T., Mathews G. J., Ikeda K. Branching ratios for 3He(α, γ)7Be and 3H(α, γ)7Li. Phys. Rev. C 40 (1989) 525. https://doi.org/10.1103/PhysRevC.40.525
24. Kajino T., Toki H., Kubo K. -I., Tanihata I. Nuclear-matter radii of 7Be and 7Li and astrophysical S-factors for radiative alpha-capture reactions. Phys. Lett. B 202 (1988) 475. https://doi.org/10.1016/0370-2693(88)91846-1
25. Kajino T. The 3He(α, γ)7Be and 3H(α, γ)7Li reactions at astrophysical energies. Nucl. Phys. A 460 (1986) 559. https://doi.org/10.1016/0375-9474(86)90428-8
26. Kajino T., Arima A. Resonating-Group Calculation of Radiative Capture Reactions α(3He, γ)7Be and α(t, γ)7Li at Astrophysical Low Energies. Phys. Rev. Lett. 52 (1984) 739. https://doi.org/10.1103/PhysRevLett.52.739
27. Baye D., Descouvemont P. Electromagnetic transitions and radiative capture in the generator-coordinate method. Nucl. Phys. A 407 (1983) 77. https://doi.org/10.1016/0375-9474(83)90309-3
28. Baye D., Descouvemont P. Antisymmetrization effects in radiative capture reactions. Ann. Phys. 165 (1985) 115. https://doi.org/10.1016/S0003-4916(85)80007-5
29. Chopovsky L. L.On the astrophysical S-factor of 3He(α, γ)7Be and 3H(α, γ)7Li reactions at zero energy. Phys. Lett. B 229 (1989) 316. https://doi.org/10.1016/0370-2693(89)90410-3
30. Vasilevsky V. S., Arickx F., Broeckhove J., Kovalenko T. P. A microscopic three-cluster model with nuclear polarization applied to the resonances of 7Be and the reaction 6Li(p, 3He)4He. Nucl. Phys. A 824 (2009) 37. https://doi.org/10.1016/j.nuclphysa.2009.03.011
31. Nesterov A. V., Vasilevsky V. S., Kovalenko T. P. Effect of cluster polarization on the spectrum of the 7Li nucleus and on the reaction 6Li(n, 3H)4He. Phys. Atom. Nucl. 72 (2009) 1450. https://doi.org/10.1134/S1063778809090051
32. Filippov G. F., Vasilevsky V. S., Nesterov A. V. On the nature of some monopole resonances in p-shell nuclei. Sov. J. Nucl. Phys. 38 (1983) 347.
33. Filippov G. F., Vasilevsky V. S., Chopovsky L. L. Solution of problems in the microscopic theory of the nucleus using the technique of generalized coherent states. Sov. J. Part. and Nucl. 16 (1985) 153.
34. Filippov G. F., Vasilevsky V. S., Kruchinin S. P., Chopovsky L. L On the nature of the resonances observed in photonuclear reactions. Sov. J. Nucl. Phys. 43 (1986) 536.
35. Heller E. J., Yamani H. A. New L2 approach to quantum scattering: Theory. Phys. Rev. A 9 (1974) 1201. https://doi.org/10.1103/PhysRevA.9.1201
36. Yamani H. A., Fishman L. J-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16 (1975) 410. https://doi.org/10.1063/1.522516
37. Filippov G. F., Okhrimenko I. P. Use of an oscillator basis for solving continuum problems. Sov. J. Nucl. Phys. 32 (1981) 480.
38. Filippov G. F. On taking into account correct asymptotic behavior in oscillator-basis expansions. Sov. J. Nucl. Phys. 33 (1981) 486.
39. Canton L., Levchuk L. G. Low-energy radiative-capture reactions within two-cluster coupled-channel description. Nucl. Phys. A 808 (2008) 192. https://doi.org/10.1016/j.nuclphysa.2008.05.006
40. Thompson D. R., LeMere M., Tang Y. C. Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286 (1977) 53. https://doi.org/10.1016/0375-9474(77)90007-0
41. Reichstein I., Tang Y. C. Study of N + α system with the resonating-group method. Nucl. Phys. A 158 (1970) 529. https://doi.org/10.1016/0375-9474(70)90201-0
42. Nemets O. F., Neudachin V. G., Rudchik A. T. et al. Nucleon Clusters in Atomic Nuclei and Many-Nucleon Transfer Reactions (Kyiv: Naukova Dumka, 1988) (Rus).
43. Tilley D. R., Cheves C. M., Godwin J. L. et al. Energy levels of light nuclei A = 5, 6, 7. Nucl. Phys. A 708 (2002) 3. https://doi.org/10.1016/S0375-9474(02)00597-3
44. Tanihata I., Hamagaki H., Hashimoto O. et al. Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region. Phys. Rev. Lett. 55 (1985) 2676. https://doi.org/10.1103/PhysRevLett.55.2676