Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 1, pages 40-48.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.03.2011.
PDF Full text (en)
https://doi.org/10.15407/jnpae2011.01.040

Results on dark matter by DAMA/LIBRA at Gran Sasso

R. Bernabei1,2, P. Belli1, F. Cappella3,4, R. Cerulli5, C.J. Dai6, A. d'Angelo3,4, H. L. He6, A. Incicchitti3, X. H. Ma6, F. Montecchia1,7, F. Nozzoli1,2, D. Prosperi3,4, X. D. Sheng6, R. G. Wang6, Z. P. Ye6,8

1Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione Roma, Rome, Italy
4Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
5Laboratori Nazionali del Gran Sasso, Istituto Nazionale di Fisica Nucleare. Assergi, Italy
6Chinese Academy, Beijing, China
7Laboratorio Sperimentale Policentrico di Ingegneria Medica, Università di Roma "Tor Vergata", Rome, Italy
8University of Jing Gangshan, Jiangxi, China

Abstract: DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N. The data collected in the first six annual cycles have already been released. The cumulative exposure - including that of the former DAMA/NaI experiment (0.29 t · yr) - is now 1.17 t · yr, corresponding to 13 annual cycles; this exposure is orders of magnitude larger than the exposures typically collected in the field. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 σ C.L. for the cumulative exposure). In particular, the modulation amplitude of the single-hit events in the (2 - 6) keV energy interval measured in NaI(Tl) target is (0.0116 ± 0.0013) cpd/kg/keV, the measured phase is (146 ± 7) days and the measured period is (0.999 ± 0.002) yr, values well in agreement with those expected for the DM particles. Various related arguments are addressed.

Keywords: dark matter, experiment DAMA/NaI, DAMA/LIBRA.

References:

1. Bernabei R. et al. Il Nuovo Cim. A 112 (1999) 545. https://doi.org/10.1007/BF03035868

2. Bernabei R. et al. Phys. Lett. B 389 (1996) 757; https://doi.org/10.1016/S0370-2693(96)01483-9

Bernabei R. et al. Phys. Lett. B 424 (1998) 195; https://doi.org/10.1016/S0370-2693(98)00172-5

Bernabei R. et al. Phys. Lett. B 450 (1999) 448; https://doi.org/10.1016/S0370-2693(99)00091-X

Belli P. et al. Phys. Rev. D 61 (1999) 023512; https://doi.org/10.1103/PhysRevD.61.023512

Bernabei R. et al. Phys. Lett. B 480 (2000) 23; https://doi.org/10.1016/S0370-2693(00)00405-6

Bernabei R. et al. Phys. Lett. B 509 (2001) 197; https://doi.org/10.1016/S0370-2693(01)00493-2

Bernabei R. et al. Eur. Phys. J. C 23 (2002) 61; https://doi.org/10.1007/s100520100854

Belli P et al. Phys. Rev. D 66 (2002) 043503. https://doi.org/10.1103/PhysRevD.66.043503

3. Bernabei R. et al. Eur. Phys. J. C 18 (2000) 283. https://doi.org/10.1007/s100520000540

4. Bernabei R. et al. La Rivista del Nuovo Cimento 26 (2003) 1. https://doi.org/10.1007/BF03548916

5. Bernabei R. et al. Int. J. Mod. Phys. D 13 (2004) 2127. https://doi.org/10.1142/S0218271804006619

6. Bernabei R. et al. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874

7. Bernabei R. et al. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9

8. Bernabei R. et al. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093

9. Bernabei R. et al. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0

10. Bernabei R. et al. Phys. Rev. D 77 (2008) 023506. https://doi.org/10.1103/PhysRevD.77.023506

11. Bernabei R. et al. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473

12. Bernabei R. et al. Phys. Lett. B 408 (1997) 439; https://doi.org/10.1016/S0370-2693(97)00842-3

Belli P. et al. Phys. Lett. B 460 (1999) 236; https://doi.org/10.1016/S0370-2693(99)00783-2

Bernabei R. et al. Phys. Rev. Lett. 83 (1999) 4918; https://doi.org/10.1103/PhysRevLett.83.4918

Belli P. et al. Phys. Rev. C 60 (1999) 065501; https://doi.org/10.1103/PhysRevC.60.065501

Bernabei R. et al. Il Nuovo Cim. A 112 (1999) 1541;

Bernabei R. et al. Phys. Lett. B 515 (2001) 6; https://doi.org/10.1016/S0370-2693(01)00840-1

Cappella F. et al. Eur. Phys. J. direct C 14 (2002) 1;

Bernabei R. et al. Eur. Phys. J. A 23 (2005) 7; https://doi.org/10.1140/epja/i2004-10072-2

Bernabei R. et al. Eur. Phys. J. A 24 (2005) 51; https://doi.org/10.1140/epja/i2004-10122-9

Bernabei R. et al. Astrop. Phys. 4 (1995) 45; https://doi.org/10.1016/0927-6505(95)00020-H

Bernabei R. The Identification of Dark Matter (Singapore: World Sc. Pub., 1997) p. 574.

13. Belli P. et al. Astropart. Phys. 5 (1996) 217; https://doi.org/10.1016/0927-6505(96)00023-0

Belli P. et al. Il Nuovo Cim. C 19 (1996) 537; https://doi.org/10.1007/BF02523769

Belli P. et al. Phys. Lett. B 387 (1996) 222; https://doi.org/10.1016/0370-2693(96)00951-3

Phys. Lett. B 389 (1996) 783 (err.); https://doi.org/10.1016/S0370-2693(96)01448-7

Bernabei R. et al. Phys. Lett. B 436 (1998) 379; https://doi.org/10.1016/S0370-2693(98)00980-0

Belli P. et al. Phys. Lett. B 465 (1999) 315; https://doi.org/10.1016/S0370-2693(99)01091-6

Belli P. et al. Phys. Rev. D 61 (2000) 117301; https://doi.org/10.1103/PhysRevD.61.117301

Bernabei R. et al. New J. of Phys. 2 (2000) 15.1; https://doi.org/10.1007/s100520000523

Bernabei R. et al. Phys. Lett. B 493 (2000) 12; https://doi.org/10.1007/s100520050049

Bernabei R. et al. Nucl. Instr. & Meth. A 482 (2002) 728; https://doi.org/10.1016/S0168-9002(01)01918-0

Bernabei R. et al. Eur. Phys. J. direct C 11 (2001) 1;

Bernabei R. et al. Phys. Lett. B 527 (2002) 182; https://doi.org/10.1016/S0370-2693(02)01177-2

Bernabei R. et al. Phys. Lett. B 546 (2002) 23; https://doi.org/10.1016/S0370-2693(02)02671-0

Bernabei R. et al. Beyond the Desert 2003 (Berlin, Springer, 2003) p. 365; https://doi.org/10.1007/978-3-642-18534-2_22

Bernabei R. et al. Eur. Phys. J. A 27 (2006) 35. https://doi.org/10.1140/epja/i2006-08-004-y

14. Bernabei R. et al. Astropart. Phys. 7 (1997) 73; https://doi.org/10.1016/S0927-6505(97)00003-0

Bernabei R. et al. Il Nuovo Cim. A 110 (1997) 189; https://doi.org/10.1007/BF03185558

Belli P. et al. Astropart. Phys. 10 (1999) 115; https://doi.org/10.1016/S0927-6505(98)00034-6

Belli P. et al. Nucl. Phys. B 563 (1999) 97; https://doi.org/10.1016/S0026-0576(99)80054-3

Bernabei R. et al. Nucl. Phys. A 705 (2002) 29; https://doi.org/10.1023/A:1021101517083

Belli P. et al. Nucl. Instr. & Meth. A 498 (2003) 352; https://doi.org/10.1016/S0168-9002(02)02106-X

Cerulli R. et al. Nucl. Instr. & Meth. A 525 (2004) 535; https://doi.org/10.1016/j.nima.2004.02.005

Bernabei R. et al. Nucl. Instr. & Meth. A 555 (2005) 270; https://doi.org/10.1016/j.nima.2005.09.030

Bernabei R. et al. Ukr. J. Phys. 51 (2006) 1037;

Belli P. et al. Nucl. Phys. A 789 (2007) 15; https://doi.org/10.1016/j.nuclphysa.2007.03.001

Belli P. et al. Phys. Rev. C 76 (2007) 064603; https://doi.org/10.1143/JPSJ.76.064603

Belli P. et al. Phys. Lett. B 658 (2008) 193; https://doi.org/10.1016/j.physletb.2007.10.075

Belli P. et al. Eur. Phys. J. A 36 (2008) 167; https://doi.org/10.1140/epja/i2008-10593-6

Belli P. et al. Nucl. Phys. A 826 (2009) 256; https://doi.org/10.1016/j.nuclphysa.2009.05.139

Belli P. et al. Nucl. Instr. & Meth. A 615 (2010) 301. https://doi.org/10.1016/j.nuclphysa.2009.05.139

15. Belli P. et al. Nucl. Instr. & Meth. A 572 (2007) 734; https://doi.org/10.1016/j.nima.2006.12.025

Belli P. et al. Nucl. Phys. A 806 (2008) 388; https://doi.org/10.1016/j.nuclphysa.2008.02.306

Belli P. et al. Nucl. Phys. A 824 (2009) 101; https://doi.org/10.1016/j.nuclphysa.2009.03.012

Belli P. et al. Eur. Phys. J. A 42 (2009) 171; https://doi.org/10.1140/epja/i2009-10867-5

Belli P. et al. Proc. of the 2-nd Int. Conf. "Currents Problems in Nuclear Physics and Atomic Energy", Kyiv, 9 - 15 June, 2008 (Kyiv, 2009) p. 473.

16. Bernabei R. et al. Nucl. Instr. & Meth. A 592 (2008) 297. https://doi.org/10.1016/j.nima.2008.04.082

17. Bernabei R. et al. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y

18. Bernabei R. et al. Eur. Phys. J. C 62 (2009) 327. https://doi.org/10.1140/epjc/s10052-009-1068-1

19. Bernabei R. et al. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9

20. Drukier K. A. et al. Phys. Rev. D 33 (1986) 3495; https://doi.org/10.1103/PhysRevD.33.3495

Freese K. et al. Phys. Rev. D 37 (1988) 3388. https://doi.org/10.1103/PhysRevD.37.3388

21. Smith D., Weiner N. Phys. Rev. D 64 (2001) 043502; https://doi.org/10.1103/PhysRevD.64.043502

Tucker-Smith D., Weiner N. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.063509

22. Freese K. et al. Phys. Rev. D 71 (2004) 043516; https://doi.org/10.1103/PhysRevD.71.043516

Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.259901

23. Ling F. S., Sikivie P., Wick S. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503

24. Bernabei R. et al. arXiv:0912.0660[astro-ph.GA], to appear in the Proceed. of Scineghe09, October 2009, Assisi (It).

25. Bernabei R. et al. J. Phys.: Conf. Ser. (2010) Vol. 203 p. 012040 (arXiv:0912.4200); Talk given by F. Nozzoli. http://taup2009.lngs.infn.it/slides/jul3/nozzoli.pdf

26. Bernabei R. et al. Eur. Phys. J. C 23 (2002) 61. https://doi.org/10.1007/s100520100854

27. Bottino A. et al. Phys. Rev. D 67 (2003) 063519; https://doi.org/10.1103/PhysRevD.67.063519

Bottino A. et al. Phys. Rev. D 69 (2003) 037302; https://doi.org/10.1103/PhysRevD.69.037302

Bottino A. et al. Phys. Rev. D 78 (2008) 083520. https://doi.org/10.1103/PhysRevD.78.083520

28. Bottino A. et al. Phys. Rev. D 81 (2010) 107302. https://doi.org/10.1103/PhysRevD.81.107302

29. Foot R. Phys. Rev. D 78 (2008) 043529. https://doi.org/10.1103/PhysRevD.78.043529

30. Bai Y., Fox P. J. arXiv:0909.2900.

31. Belotsky K. et al. Phys. Atom. Nucl. 71 (2008) 147. https://doi.org/10.1134/S106377880801016X

32. Drobyshevski E. M. et al. Astrohys. & Astron. Trans. 26:4 (2007) 289; https://doi.org/10.1080/10556790701524434

Drobyshevski E. M. et al. Mod. Phys. Lett. A 23 (2008) 3077. https://doi.org/10.1142/S0217732308028430

33. Arkani-Hamed Nima et al. Phys. Rev. D 79 (2009) 015014. https://doi.org/10.1103/PhysRevD.79.015014

34. Alves D. S. M. et al. arXiv:0903.3945.

35. Aalseth C. E. et al. arXiv :1002.4703.

36. Bernabei R. et al. Liquid Noble gases for Dark Matter searches: a synoptic survey, Exorma Ed., Roma, ISBN 978-88-95688-12-1 (2009) p. 1 (arXiv:0806.0011v2).

37. Benoit A. et al. Phys. Lett. B 637 (2006) 156. https://doi.org/10.1016/j.physletb.2006.04.030

38. Collar J. I., McKinsey D. N. arXiv:1005.3723v1, 1005.0838v3: Collar J. I. arXiv:1006.2031.

39. CDMS Collaboration arXiv:0912.3592.

40. XENON100 Collaboration arXiv:1005.0380v2.

41. Hudson R. Found. Phys. 39 (2009) 174. https://doi.org/10.1007/s10701-009-9271-3

42. Donato F. et al. Phys. Rev. Lett. 102 (2009) 071301; https://doi.org/10.1103/PhysRevLett.102.071301

Delahaye T. et al. Astron. Astrophys. 501 (2009) 821; https://doi.org/10.1051/0004-6361/200811130

Profumo S. arXiv:0812.4457;

Blasi P. Phys. Rev. Lett. 103 (2009) 051104; https://doi.org/10.1103/PhysRevLett.103.051104

Ahlers M. et al. arXiv:0909.4060.