![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Results on dark matter by DAMA/LIBRA at Gran Sasso
R. Bernabei1,2, P. Belli1, F. Cappella3,4, R. Cerulli5, C.J. Dai6, A. d'Angelo3,4, H. L. He6, A. Incicchitti3, X. H. Ma6, F. Montecchia1,7, F. Nozzoli1,2, D. Prosperi3,4, X. D. Sheng6, R. G. Wang6, Z. P. Ye6,8
1Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione Roma, Rome, Italy
4Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
5Laboratori Nazionali del Gran Sasso, Istituto Nazionale di Fisica Nucleare. Assergi, Italy
6Chinese Academy, Beijing, China
7Laboratorio Sperimentale Policentrico di Ingegneria Medica, Università di Roma "Tor Vergata", Rome, Italy
8University of Jing Gangshan, Jiangxi, China
Abstract: DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N. The data collected in the first six annual cycles have already been released. The cumulative exposure - including that of the former DAMA/NaI experiment (0.29 t · yr) - is now 1.17 t · yr, corresponding to 13 annual cycles; this exposure is orders of magnitude larger than the exposures typically collected in the field. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 σ C.L. for the cumulative exposure). In particular, the modulation amplitude of the single-hit events in the (2 - 6) keV energy interval measured in NaI(Tl) target is (0.0116 ± 0.0013) cpd/kg/keV, the measured phase is (146 ± 7) days and the measured period is (0.999 ± 0.002) yr, values well in agreement with those expected for the DM particles. Various related arguments are addressed.
Keywords: dark matter, experiment DAMA/NaI, DAMA/LIBRA.
References:1. Bernabei R. et al. Il Nuovo Cim. A 112 (1999) 545. https://doi.org/10.1007/BF03035868
2. Bernabei R. et al. Phys. Lett. B 389 (1996) 757; https://doi.org/10.1016/S0370-2693(96)01483-9
Bernabei R. et al. Phys. Lett. B 424 (1998) 195; https://doi.org/10.1016/S0370-2693(98)00172-5 Bernabei R. et al. Phys. Lett. B 450 (1999) 448; https://doi.org/10.1016/S0370-2693(99)00091-X Belli P. et al. Phys. Rev. D 61 (1999) 023512; https://doi.org/10.1103/PhysRevD.61.023512 Bernabei R. et al. Phys. Lett. B 480 (2000) 23; https://doi.org/10.1016/S0370-2693(00)00405-6 Bernabei R. et al. Phys. Lett. B 509 (2001) 197; https://doi.org/10.1016/S0370-2693(01)00493-2 Bernabei R. et al. Eur. Phys. J. C 23 (2002) 61; https://doi.org/10.1007/s100520100854 Belli P et al. Phys. Rev. D 66 (2002) 043503. https://doi.org/10.1103/PhysRevD.66.0435033. Bernabei R. et al. Eur. Phys. J. C 18 (2000) 283. https://doi.org/10.1007/s100520000540
4. Bernabei R. et al. La Rivista del Nuovo Cimento 26 (2003) 1. https://doi.org/10.1007/BF03548916
5. Bernabei R. et al. Int. J. Mod. Phys. D 13 (2004) 2127. https://doi.org/10.1142/S0218271804006619
6. Bernabei R. et al. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874
7. Bernabei R. et al. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9
8. Bernabei R. et al. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093
9. Bernabei R. et al. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0
10. Bernabei R. et al. Phys. Rev. D 77 (2008) 023506. https://doi.org/10.1103/PhysRevD.77.023506
11. Bernabei R. et al. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473
12. Bernabei R. et al. Phys. Lett. B 408 (1997) 439; https://doi.org/10.1016/S0370-2693(97)00842-3
Belli P. et al. Phys. Lett. B 460 (1999) 236; https://doi.org/10.1016/S0370-2693(99)00783-2 Bernabei R. et al. Phys. Rev. Lett. 83 (1999) 4918; https://doi.org/10.1103/PhysRevLett.83.4918 Belli P. et al. Phys. Rev. C 60 (1999) 065501; https://doi.org/10.1103/PhysRevC.60.065501 Bernabei R. et al. Il Nuovo Cim. A 112 (1999) 1541; Bernabei R. et al. Phys. Lett. B 515 (2001) 6; https://doi.org/10.1016/S0370-2693(01)00840-1 Cappella F. et al. Eur. Phys. J. direct C 14 (2002) 1; Bernabei R. et al. Eur. Phys. J. A 23 (2005) 7; https://doi.org/10.1140/epja/i2004-10072-2 Bernabei R. et al. Eur. Phys. J. A 24 (2005) 51; https://doi.org/10.1140/epja/i2004-10122-9 Bernabei R. et al. Astrop. Phys. 4 (1995) 45; https://doi.org/10.1016/0927-6505(95)00020-H Bernabei R. The Identification of Dark Matter (Singapore: World Sc. Pub., 1997) p. 574.13. Belli P. et al. Astropart. Phys. 5 (1996) 217; https://doi.org/10.1016/0927-6505(96)00023-0
Belli P. et al. Il Nuovo Cim. C 19 (1996) 537; https://doi.org/10.1007/BF02523769 Belli P. et al. Phys. Lett. B 387 (1996) 222; https://doi.org/10.1016/0370-2693(96)00951-3 Phys. Lett. B 389 (1996) 783 (err.); https://doi.org/10.1016/S0370-2693(96)01448-7 Bernabei R. et al. Phys. Lett. B 436 (1998) 379; https://doi.org/10.1016/S0370-2693(98)00980-0 Belli P. et al. Phys. Lett. B 465 (1999) 315; https://doi.org/10.1016/S0370-2693(99)01091-6 Belli P. et al. Phys. Rev. D 61 (2000) 117301; https://doi.org/10.1103/PhysRevD.61.117301 Bernabei R. et al. New J. of Phys. 2 (2000) 15.1; https://doi.org/10.1007/s100520000523 Bernabei R. et al. Phys. Lett. B 493 (2000) 12; https://doi.org/10.1007/s100520050049 Bernabei R. et al. Nucl. Instr. & Meth. A 482 (2002) 728; https://doi.org/10.1016/S0168-9002(01)01918-0 Bernabei R. et al. Eur. Phys. J. direct C 11 (2001) 1; Bernabei R. et al. Phys. Lett. B 527 (2002) 182; https://doi.org/10.1016/S0370-2693(02)01177-2 Bernabei R. et al. Phys. Lett. B 546 (2002) 23; https://doi.org/10.1016/S0370-2693(02)02671-0 Bernabei R. et al. Beyond the Desert 2003 (Berlin, Springer, 2003) p. 365; https://doi.org/10.1007/978-3-642-18534-2_22 Bernabei R. et al. Eur. Phys. J. A 27 (2006) 35. https://doi.org/10.1140/epja/i2006-08-004-y14. Bernabei R. et al. Astropart. Phys. 7 (1997) 73; https://doi.org/10.1016/S0927-6505(97)00003-0
Bernabei R. et al. Il Nuovo Cim. A 110 (1997) 189; https://doi.org/10.1007/BF03185558 Belli P. et al. Astropart. Phys. 10 (1999) 115; https://doi.org/10.1016/S0927-6505(98)00034-6 Belli P. et al. Nucl. Phys. B 563 (1999) 97; https://doi.org/10.1016/S0026-0576(99)80054-3 Bernabei R. et al. Nucl. Phys. A 705 (2002) 29; https://doi.org/10.1023/A:1021101517083 Belli P. et al. Nucl. Instr. & Meth. A 498 (2003) 352; https://doi.org/10.1016/S0168-9002(02)02106-X Cerulli R. et al. Nucl. Instr. & Meth. A 525 (2004) 535; https://doi.org/10.1016/j.nima.2004.02.005 Bernabei R. et al. Nucl. Instr. & Meth. A 555 (2005) 270; https://doi.org/10.1016/j.nima.2005.09.030 Bernabei R. et al. Ukr. J. Phys. 51 (2006) 1037; Belli P. et al. Nucl. Phys. A 789 (2007) 15; https://doi.org/10.1016/j.nuclphysa.2007.03.001 Belli P. et al. Phys. Rev. C 76 (2007) 064603; https://doi.org/10.1143/JPSJ.76.064603 Belli P. et al. Phys. Lett. B 658 (2008) 193; https://doi.org/10.1016/j.physletb.2007.10.075 Belli P. et al. Eur. Phys. J. A 36 (2008) 167; https://doi.org/10.1140/epja/i2008-10593-6 Belli P. et al. Nucl. Phys. A 826 (2009) 256; https://doi.org/10.1016/j.nuclphysa.2009.05.139 Belli P. et al. Nucl. Instr. & Meth. A 615 (2010) 301. https://doi.org/10.1016/j.nuclphysa.2009.05.13915. Belli P. et al. Nucl. Instr. & Meth. A 572 (2007) 734; https://doi.org/10.1016/j.nima.2006.12.025
Belli P. et al. Nucl. Phys. A 806 (2008) 388; https://doi.org/10.1016/j.nuclphysa.2008.02.306 Belli P. et al. Nucl. Phys. A 824 (2009) 101; https://doi.org/10.1016/j.nuclphysa.2009.03.012 Belli P. et al. Eur. Phys. J. A 42 (2009) 171; https://doi.org/10.1140/epja/i2009-10867-5 Belli P. et al. Proc. of the 2-nd Int. Conf. "Currents Problems in Nuclear Physics and Atomic Energy", Kyiv, 9 - 15 June, 2008 (Kyiv, 2009) p. 473.16. Bernabei R. et al. Nucl. Instr. & Meth. A 592 (2008) 297. https://doi.org/10.1016/j.nima.2008.04.082
17. Bernabei R. et al. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y
18. Bernabei R. et al. Eur. Phys. J. C 62 (2009) 327. https://doi.org/10.1140/epjc/s10052-009-1068-1
19. Bernabei R. et al. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9
20. Drukier K. A. et al. Phys. Rev. D 33 (1986) 3495; https://doi.org/10.1103/PhysRevD.33.3495
Freese K. et al. Phys. Rev. D 37 (1988) 3388. https://doi.org/10.1103/PhysRevD.37.338821. Smith D., Weiner N. Phys. Rev. D 64 (2001) 043502; https://doi.org/10.1103/PhysRevD.64.043502
Tucker-Smith D., Weiner N. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.06350922. Freese K. et al. Phys. Rev. D 71 (2004) 043516; https://doi.org/10.1103/PhysRevD.71.043516
Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.25990123. Ling F. S., Sikivie P., Wick S. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503
24. Bernabei R. et al. arXiv:0912.0660[astro-ph.GA], to appear in the Proceed. of Scineghe09, October 2009, Assisi (It).
25. Bernabei R. et al. J. Phys.: Conf. Ser. (2010) Vol. 203 p. 012040 (arXiv:0912.4200); Talk given by F. Nozzoli. http://taup2009.lngs.infn.it/slides/jul3/nozzoli.pdf
26. Bernabei R. et al. Eur. Phys. J. C 23 (2002) 61. https://doi.org/10.1007/s100520100854
27. Bottino A. et al. Phys. Rev. D 67 (2003) 063519; https://doi.org/10.1103/PhysRevD.67.063519
Bottino A. et al. Phys. Rev. D 69 (2003) 037302; https://doi.org/10.1103/PhysRevD.69.037302 Bottino A. et al. Phys. Rev. D 78 (2008) 083520. https://doi.org/10.1103/PhysRevD.78.08352028. Bottino A. et al. Phys. Rev. D 81 (2010) 107302. https://doi.org/10.1103/PhysRevD.81.107302
29. Foot R. Phys. Rev. D 78 (2008) 043529. https://doi.org/10.1103/PhysRevD.78.043529
30. Bai Y., Fox P. J. arXiv:0909.2900.
31. Belotsky K. et al. Phys. Atom. Nucl. 71 (2008) 147. https://doi.org/10.1134/S106377880801016X
32. Drobyshevski E. M. et al. Astrohys. & Astron. Trans. 26:4 (2007) 289; https://doi.org/10.1080/10556790701524434
Drobyshevski E. M. et al. Mod. Phys. Lett. A 23 (2008) 3077. https://doi.org/10.1142/S021773230802843033. Arkani-Hamed Nima et al. Phys. Rev. D 79 (2009) 015014. https://doi.org/10.1103/PhysRevD.79.015014
34. Alves D. S. M. et al. arXiv:0903.3945.
35. Aalseth C. E. et al. arXiv :1002.4703.
36. Bernabei R. et al. Liquid Noble gases for Dark Matter searches: a synoptic survey, Exorma Ed., Roma, ISBN 978-88-95688-12-1 (2009) p. 1 (arXiv:0806.0011v2).
37. Benoit A. et al. Phys. Lett. B 637 (2006) 156. https://doi.org/10.1016/j.physletb.2006.04.030
38. Collar J. I., McKinsey D. N. arXiv:1005.3723v1, 1005.0838v3: Collar J. I. arXiv:1006.2031.
39. CDMS Collaboration arXiv:0912.3592.
40. XENON100 Collaboration arXiv:1005.0380v2.
41. Hudson R. Found. Phys. 39 (2009) 174. https://doi.org/10.1007/s10701-009-9271-3
42. Donato F. et al. Phys. Rev. Lett. 102 (2009) 071301; https://doi.org/10.1103/PhysRevLett.102.071301
Delahaye T. et al. Astron. Astrophys. 501 (2009) 821; https://doi.org/10.1051/0004-6361/200811130 Profumo S. arXiv:0812.4457; Blasi P. Phys. Rev. Lett. 103 (2009) 051104; https://doi.org/10.1103/PhysRevLett.103.051104 Ahlers M. et al. arXiv:0909.4060.