Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 1, pages 35-39.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.03.2011.
PDF Full text (en)
https://doi.org/10.15407/jnpae2011.01.035

Extraction of neutron-neutron scattering length from nn coincidence-geometry nd breakup data

E. S. Konobeevski, M. V. Mordovskoy, I. M. Sharapov, S. I. Potashev, S. V. Zuyev

Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Abstract: We report preliminary results of a kinematically complete experiment on measurement of nd breakup reaction yield at neutron beam RADEX of Institute for Nuclear Research (Moscow, Russia). In the experiment two secondary neutrons are detected in geometry of neutron-neutron final-state interaction. Data are obtained at energy of incident neutrons En = 40 - 60 MeV for various divergence angles of two neutrons ΔΘ = 4, 6, 8°. 1S0 neutron-neutron scattering lengths ann were determined by comparison of the experimental dependence of reaction yield on the relative energy of two secondary neutrons with results of simulation depending on ann. For En = 40 MeV and ΔΘ = 6° (the highest statistics in the experiment) the value ann = -17.9 ± 1.0 fm is obtained. The further improving of accuracy of the experiment and more rigorous theoretical analysis will allow one to remove the existing difference in ann values obtained in different experiments.

Keywords: breakup reaction, neutron, deuteron, neutron-neutron scattering length.

References:

1. Miller G.A, Nefkens B.M.K., Šlaus I. Phys. Rep. 194 (1990) 1. https://doi.org/10.1016/0370-1573(90)90102-8

2. Huhn V., Watzold L., Weber C. et al. Phys. Rev. C 63 (2000) 014003. https://doi.org/10.1103/PhysRevC.63.014003

3. W. von Witsch, Ruan X., Witala H. Phys. Rev. C 74 (2006) 014001. https://doi.org/10.1103/PhysRevC.74.014001

4. Gabioud B. et al. Phys. Rev. Lett. 42 (1979) 1508. https://doi.org/10.1103/PhysRevLett.42.1508

5. Howell C. R. et al. Phys. Lett. B 444 (1998) 252. https://doi.org/10.1016/S0370-2693(98)01386-0

6. Gonzalez Trotter D. E. et al. Phys. Rev. Lett. 83 (1999) 3788. https://doi.org/10.1103/PhysRevLett.83.1268

7. Gonzalez Trotter D. E. et al. Phys. Rev. C 73 (2006) 034001. https://doi.org/10.1103/PhysRevC.73.034001

8. Burmistrov Yu. M., Zuev S. V., Konobeevski E. S. et al. Instrum. Exp. Tech. 52 (2009) 769. https://doi.org/10.1134/S0020441209060025