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SHELL OSCILLATIONS IN SYMMETRY ENERGY
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The procedure of derivation of the symmetry energy from the shift of neutron-proton chemical potentials
AA = A, — 4, is suggested. We observe the nonmonotonic (sawtooth) shape of the B-stability line given by the
asymmetry parameter as a function of mass number. The behavior of the symmetry energy coefficient bsym, (A) at fixed
neutron excess D = N — Z is analyzed. We show the relation of local maxima of the B-stability line to mass numbers of

the double-closed shells.
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Many static and dynamic features of nuclei are
sensitive to isospin degree of freedom. Thenuclear
f-stability line is derived by the balance of both the
symmetry, Egyy,, and the Coulomb, E¢, energies.
However the extraction of Egym, and E; from the
nuclear binding energy is not a simple problem
because of its complicated dependency on the mass
number A in finite nuclei [1]. The standard
procedure of extraction of the symmetry energy
from a fit of mass formula to the experimental
binding energies [2] is not free from ambiguities and
does not allow one to separate the symmetry energy
into the volume, surface and curvature contributions
directly.

In the present work, we use a non-standard
procedure of extraction of the symmetry and
Coulomb energies from the experimental data using
the dependence of the isospin shift of neutron-proton
chemical potentials AA(X) =4, —4, on the
asymmetry parameter X = (N —Z2)/(N+2Z) for
nuclei beyond the beta-stability line. This procedure
allows one to represent the results for the
A-dependence of energies Egyp, and E; in a
transparent way, which can be easily used for the
extraction of the smooth volume and surface
contributions as well as the shell structure.

Considering the asymmetric nuclei with a small
asymmetry parameter X = (N —-Z)/A« 1 and
assuming the leptodermous property, the total
energy per nucleon E/A can be represented in the
following form of 4, X-expansion

E Ec(X
Ezey=eo(d) + bym@) X2+ 52, (1)

where e, (A) includes both the bulk and the surface
energies, bgym(A) is the symmetry energy
coefficient, E-(X) is the total Coulomb energy
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and R; is the Coulomb radius of the nucleus. The
beta-stability line X = X*(A4) can be directly derived
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from Eq. (1) using the condition

OE
) *4) = — A
(ax)A =0=X"(4) = biym(A)+el(4)’ €)
where
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Along the beta-stability line, the binding energy per
particle is then given by

E = ej(4) + biym) X2 + 252 (4
the upper index “*” indicates that the corresponding
quantity is determined by the variational conditions
(3) taken for fixed A and X = X* on the beta-
stability line. For any given value of A, the binding
energy can be extended beyond the beta-stability
line as

B =Lt by (X = X2+ 2R (5)

where AE;(X) = Ec(X) — Ec(X*). The symmetry

energy coefficient bgyr,(A) contains the A-indepen-
dent bulk term, bgymye » and the A-dependent

E E AEc(X)
A

surface contribution b3y, ¢ureA™ 3,
1
b;ym(A) = b;ym,vol + b;ym,surfA 3. (6)
In general, the surface symmetry energy

biymsurfA™Y/® includes also the high order
curvature correction ~A~2/3 [3].

Using Eq. (5), one can establish an important
relation for the chemical potential 1, (q = n) for a
neutron and q = p for a proton) beyond the beta-
stability line. Namely, for the fixed A we obtain the
following result from Egs. (1) and (4)

NUCLEAR PHYSICS AND ATOMIC ENERGY Vol. 12, No.1 2011



SHELL OSCILLATIONS IN SYMMETRY ENERGY
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A

where
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An = (aN)Z ’ Ap = (az)N'
On the beta-stability line, it follows from Eq. (7) that
AA(X)x=x* = 0, as it should be from the definition
of the beta-stability line. We point out that for finite
nuclei, the condition A2 = 0 on the beta-stability
line is not necessary fulfilled explicitly, because of
the discrete spectrum of the single particle levels for
both the neutrons and the protons near the Fermi

surface. Based on the definition of the beta-stability
line (3) one can rewrite Eq. (7) as

(¥
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The quantity 8(E /A)/dX in Eq. (7) can be evaluated
within the accuracy of ~1/A% using the finite
differences which are based on the experimental
values of the binding energy per nucleon B(N,Z) =
= —E(N,Z)/A. Namely

de)
(7). 4
A

%[B(N ~1,Z+1)-B(N+1,Z-1]. (10)

Since the difference (10) is taken forAZ = ~AN =2
the pairing effects do not affect the resulting
accuracy. It was shown [4] that linear dependence
AA on X by Eq. (7) is reproduced quite well
experimentally. This allows extraction of the values
of quantities bgym(A), e;(4) and X for a given
mass number A.

The dependency of the symmetry energy
coefficient bgym on the mass number A obtained
from the experimental nuclear masses using Eqs. (7)
and (10) shows the strong shell oscillations with the
amplitude of about 15 % [4]. For the purpose of
comparison, one could recall that shell effects
contribute about 1 % to the nuclear mass. We have
performed the fit of experimental data for bgym to
the leptodermous-like functional form of Eq. (6).
The change of the intervals in mass numbers A for
the fitting procedure leads to a significant difference

in the surface contribution bgym curf to the symmetry
energy. By fitting all of the available information for
A 2 12, we have obtained bgy, yo = 26.5 MeV and
the surface contribution bgym curf = —25.6 MeV
with  the

surface-to-volume  ratio

Tsyy =
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b;ym'surfl /biymyor = 1. From the fit for A =50

where the leptodermous expansion is more justified
it has been obtained bgymyo =325 MeV,
bgym,surf = —56.3 MeV and 75y = 1.7.

In Fig. 1, we have plotted the value of X*(A)
(solid dots). The dashed and dotted lines in Fig. 1
were derived from the extended Thomas-Fermi
approximation for SkM and SLy230b Skyrme
forces, respectively, see Ref. [3]. The solid (thick)
line in Fig. 1 was obtained using the empirical
formula [5]
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Fig. 1. Asymmetry parameter X" versus the mass
number A. Filled circles are the experimental
data, dashed lines show calculations using Skyrme
forces SkM and SLy230b, see Ref. [3]. Solid
lines present the functions X*(4) =04A4/(A+
+200) [5] (thick) and X*(4) = e2(A)/[biym(A) +
+e;(A)] (see Eq. (3)) with ec(4) = 0.174%/% and
biym(A) = 26.5 — 25.647*/3 (thin).

The “experimental” curve X*(A) in Fig. 1 shows
the non-monotonic (sawtooth) shape as a function of
the mass number A. This behavior is the
consequence of shell structure of single particle
levels near Fermi surface for both the neutrons and
the protons. Because of this shell structure, the
Fermi levels for protons and neutrons can coincide
by chance only. In agreement with Eq. (3), the
smooth behavior of X*(A) is achieved by a fit of the
symmetry and the Coulomb energy coefficients.
Thin solid line in Fig. 1 is obtained from Eq. (3)
with ef(A) =0.174%® and biym(4) = 26.5 -
—25.6471/3,

To make shell oscillations in X*(A) more
transparent with respect to well-known magic
nucleon numbers of the closed shells [6], let
consider the value of the chemical potential shift A4
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at fixed neutron excess, D = N —Z = AX. As seen
from Eq. (9), for the zero neutron excess the value of
AA is not affected by the symmetry energy and
completely determined by e.(A). In Fig. 2 we show
the A-dependence of the Coulomb energy coefficient
obtained from Eq. (9) using all available data with
D = 0. Solid line represents the smooth function

2 1
ec(A) = 0.20743 — 0.17443 (12)

obtained using the fit to the experimental data shown
in Fig. 2 as filled circles. Approximating the
contribution of the Coulomb interaction to AA by
function (12), we can now extract bgyr, (A) at fixed
D # 0 from the experimental values of A2 by use of
Eq. (9). We note that estimation of e; given by
Eq. (12) was made inside quite narrow interval of
nuclear masses 8 < A < 58, and the use of Eq. (12)
does not make much sense for masses A > 60 due to
the extrapolation error. Nevertheless, some
qualitative conclusions based on estimation (12) are
still possible for heavy nuclei.

A

Fig. 2. Coulomb energy coefficient e as a function
of mass number A. Symbols show experimental data
for nuclei with N =Z. Solid line represent the
smooth function ec (4) = 0.2074%/3 — 0.174A/3.

The symmetry energy coefficient as a function of
mass number for the values of the neutron excess
D =18, 22, 26 and 30 is shown in Fig. 3. It is seen
from Fig. 3 that, qualitatively, bsym(A) has canyon-
like behavior for given value of D. The width and
the position of the bottom for such “canyon”
depends on neutron excess. The left wall of the

canyon corresponds to proton closed shell and the
right wall corresponds to the neutron shell closure.
In Fig. 3 the walls are located symmetrically with
respect to A =132 which correspond to both neutron
and proton closed shell (N =82, Z = 50). From
D = 18 to D = 30 the shape of by, (4) changes to
thinner and deeper canyon with the local minimum
in the symmetry coefficient being located at mass
number which corresponds to double (proton-

neutron) magic number.
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Fig. 3. The symmetry coefficient bgyy, versus the
mass number A at fixed neutron excess D = N — Z.
The values of the neutron excess are specified by
numbers near the curves.

Let now check the above reasoning with the
shape of the beta-stability line presented in Fig. 1.
We consider the sequence of the nucleon magic
numbers [6]: 8, 20, 28, 50, 82, and 126. From this
sequence one should expect special behavior of
X*(A) nearby the following values of mass number
A=N+Z: 28 (20 + 8), 48 (28 +20), 78 (50 +28),
132 (82 + 50), and 208 (126 + 82). The “experimen-
tal” line of beta-stability (see Fig. 1) has local
maxima at mass numbers 24 (13 + 11), 48 (26 + 22),
84 (48 +36), 133 (79 + 54), and 208 (126 + 82). We
note that mass numbers of local maxima in Fig. 1
does not exactly follow double magic numbers.
Moreover, they demonstrate only nearly closed
shells for neutrons and protons, except A = 208.
Nevertheless, one still can state that, at least
approximately, there exist the correlation between
the positions of maxima of the function X*(4) and
double magic mass numbers.

REFERENCES

1. Audi G., Wapstra A.H., Thibault C. The Ame2003
atomic mass evaluation (II). Tables, graphs and
references // Nuclear Physics A. - 2003. - Vol. 729,
No. 1. -P. 337 - 676.

18

2. Jdnecke J, O’Donrnell T W. Goldanskii V.I
Symmetry and pairing energies of atomic nuclei //
Nuclear Physics A. - 2003. - Vol. 728, No. 1 - 2. -
P.23-51.

NUCLEAR PHYSICS AND ATOMIC ENERGY Vol. 12, No.1 2011



SHELL OSCILLATIONS IN SYMMETRY ENERGY

3. Kolomietz V.M., Sanzhur A.I Equation of state and // Physcal. Review C. - 2010. - Vol. 81, No. 2. - P.
symmetry energy within the stability valley // 024324-1 - 4.
European Physical Journal A. - 2008. - Vol. 38, No. 3. 5. Green AE.S, Engler N.A. Mass Surfaces // Physical
- P. 345 - 354 Review. - 1953. - Vol. 91. - P. 40 - 45.

4. Kolomietz V.M., Sanzhur A.I New derivation of the 6. Bohr A., Mottelson B.R. Nuclear Structure. - New
symmetry energy for nuclei beyond the g-stability line York: Benjamin, 1969. - Vol. 1.

OBOJIOHKOBI OCLIJALI B EHEPTII 130TONIYHOI CUMETPII
B. M. Koaomienp, A. L Canmxyp

3ampoNoHOBAHO METO/ OTPMMAHHS i30TOMIYHOT eHeprii CHMETpii BUXOAAUH 3 i30TOMIYHOro 3CyBYy HEHTPOHHOTO Ta
NPOTOHHOTO XiMiYHKX moTeHwjamB AA = A, — A,,. CrocTepiraeTbcst HEMOHOTOHH2 (mankononiGHa) ¢popMa 3aNeKHOCTI
nonoxeHHs JiHii B-cTabinbHOCTi Bim Macosoro umcia. IpoaHanizoBaHO MoBediHKY koedilieHTa e”eprii cumerpil
bgym(A) mpu cragomy 3HAYeHHI HEeWTpOHHOTo HAaMMIKY D = N —Z. YCTaHOBNEHO KOpEIALII0 IONOXEHHA
NOKaJbHAX MaKCHMYMiB JIiHii B-cTaGlIbHOCTI 3 MariYHUMM 3HAaYCHHAMU MacOBOTO YMCNA JUIA HNOABIMHO 3alIOBHEHMX
0060NOHOK.

Kniouosi cnoea: eHepris CHMETpil, i30ToN4HuHA 3CYB, JiHia f-CTaGimbHOCT], 06010HKOBI OCLIMJIALLIT.

OBOJIOYEYHBIE OCIULISALMNA B SHEPTUU U30TONMMYECKONH CHUMMETPUM
B. M. Konomuen, A.H. Camxyp

TIpennoxeH METOH MONyYeHHs H3OTOMMYECKOH 3HEPIMH CHMMETPMH HMCXO M3 HM30TOMMYECKOro CIBHra
HEHTPOHHOTO M MPOTOHHOTO XUMHMYECKHX MOTeHIHanos AA = A, — 4. Ha6monaercss HeMOHOTOHHas (munoo6pa3Has)
(opMa 3aBHCHMOCTH TONOKEHMA JIMHHHM [3-CTabWILHOCTH OT MaccoBoro 4ncia. IIpoaHanmu3HpoOBaHO MOBEACHHE
KOI()DUIMEHTa DHEPIUM CHUMMETPHH bgym(A) TPH MOCTOAHHOM 3HAYCHHH HEHTPOHHOIO usdmtka D =N —Z.
Y CTaHOBJIEHA KOPPENALHS TIONOKEHUs JTOKANbHIX MaKCUMyMOB JIMHUM (3-CTaOHIBHOCTH C MAarMu€CKMMHU 3Ha4CHHAMH
MAacCOBOI0 YHCHA IS ABaK bl 3aTIOTHEHHBIX 000104eK.

Kntouegvie cnosa: 3HEpTMs CHMMETPHH, H30TONMYECKHH CHBMT, JIMHHA pB-crabuwibHocTH, 06004e4HbIE
OCHMJLIALINH.
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