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Within a three-particle model (a + N + N), structure peculiarities of °He and °Li halo nuclei are studied. Within a
four-particle model (& + o + N + N), the structure of '’Be and '°C nuclei is analized and compared with that of *He and
SLi. The charge density distributions and form factors of these nuclei are calculated and explained. The density
distributions of extra nucleons in '°Be and '°C are studied and compared with the calculated distributions of halo
nucleons in *He and °Li. A detailed study of the asymptotics of the density distributions is carried out for the three-
particle “He and °Li nuclei. Asymptotic behavior of the amplitudes of clusterization is analyzed, and the coefficients of
clusterization are calculated for the deuteron cluster in °Li and the dineutron cluster in *He. The variational method with

optimized Gaussian bases is used in calculations.
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Introduction

A number of light nuclei are usually treated, from
a qualitative point of view, as systems consisting
from a few a-particles and some extra nucleons. The
physical reason for a successful description of the
nuclei within such models is comparatively small
binding energies of these systems relative to the a-
particle binding energy and comparatively large
average distances between clusters. The widely used
three-particle model [1, 2] for six-nucleon halo
nuclei °He and °Li is competitive with the
approaches [3, 4] starting from six nucleon degrees
of freedom. It is important that, if the parameters of
the NN- and Na-potentials are fitted to reproduce the
energies and radii of the nuclei (in addition to the
scattering phase shifts), the three-particle model for
He and °Li nuclei becomes [5, 6] a quantitative
theory which enables to analyze the structure
functions of the nuclei. In this work, we compare
some characteristic features of the structure
functions of the halo nuclei *He and °Li between
themselves and with those of '“Be and '°C nuclei,
considered within the four-particle model, where
two extra nucleons move around two a-particles. In
particular, the density distributions and form factors
are studied, and the general properties of the
probability densities of these nuclei are compared.

We use the variational method with Gaussian
bases [7, 8] and the optimization of the bases [5, 6]
to achieve a high accuracy in calculations, and we
show that this approach allows one to study even the
asymptotics of the structure functions [9] in both the
coordinate and momentum representations. The
obtained asymptotics for the density distributions of
particles in °He and °Li nuclei are confirmed by
analytical estimations. The problem of the
asymptotics of form factors is analyzed, and the non-
trivial character of the asymptotics for systems with
Gaussian potentials is established.
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General properties of the structure functions
of °He, °Li, and "’Be, "’C nuclei

The main properties of the structure functions of
He and °Li nuclei are explained within a three-
particle model by the presence of two configurations
in their wave functions (the "triangle" and "cigar"
configurations [1, 2, 5, 6]). In our calculations, we
use three-particle Hamiltonians with NN- and Nao-
potentials [5, 6] reproducing the experimental phase
shifts at low energies simultaneously with the
ground state energies and charge r.m.s. radii of the
nucleus under consideration. This is achieved by the
use of potentials with local and non-local (separable)
terms. A method is developed to calculate phase
shifts without a problem of singularities inherent to
the variable phase approach with this kind of
potentials. To find the structure functions of 'Be
and '°C nuclei, we use also an aa-potential of the
same type (local and non-local terms). This
potential, in agreement with the experiment, does
not bind the system of two a-particles (*Be),
although a small enhancement of the attraction (or
switching off the Coulomb repulsion) results in its
binding, reproduces (qualitatively) the binding
energies of the systems of three (**C) and four (‘°O)
o-particles, and enables one to describe the S-state
phase shift of the aa-scattering at low energies. In
addition, it explains (together with new versions of
Na-potentials) the binding energy of '"Be (about
8.387 MeV in the four-particle model) and its charge
radius 2.357(21) fm. It should be noted that other
versions of aa-potential (in particular, the Ali-
Bodmer potentials [10]) can also be used for
studying the structure of '’Be and '°C nuclei. The
four-particle approach for studying the '°Be and '°C
nuclei may be competitive with the one starting from
all the nucleon degrees of freedom [11].

We recall that the variational method with the
Gaussian bases [7, 8, 2] enables us to obtain the
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wave function ®(r,p) of “He and °Li nuclei with

high accuracy [5, 6] in an explicit form of a
superposition of Gaussian functions suitable for
further usage and analysis. In Fig. 1, the probability

density P(r,p)= FZPZIdQ|q)(r’p)|2

He and °Li nuclei, where r is the distance between
the halo nucleons, and p is the distance between the
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o-particle and the center of mass of the halo
nucleons. The averaging over the angles is usually
done to reduce the number of variables for pictures.
In the case of four-particle systems, with one more
Jacobi coordinate variable in the four-particle wave

function ®(r,,.p,r,,) (where r, is the relative

aa
distance between a-clusters), we make an additional
integration over one of them.
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Fig. 2. Probability density P(r,p) for the extra nucleons of '’Be (a) and '°C (b) nuclei in the ground state.

In Fig. 2, for '°Be and '°C nuclei, we depict the

. ~ 2
quantity P(r,p)= rzpzdejer @ (r.p.r,,)
additional integration over the relative coordinate
r,, between two o-particles. Here, r is again a

aa

distance between extra nucleons, and p is the
distance between the centers of mass of the two
extra nucleons and two a-particles. As it is clearly
seen from the figures, the extra nucleons of the both
four-particle nuclei also reveal two main
configurations: a "cross" one (instead of a "cigar" in

with an

the three-particle nuclei), where extra nucleons are
at the opposite sides from the o-a axis, and a
"tetrahedron" (instead of a "triangle" in °He and °Li
nuclei), where two extra nucleons form a two-
particle cluster moving around the center of mass of
the nucleus together with aa-cluster. It should be
noted that similar probability distribution calculated
for a-particles in '’Be or '°C nucleus (with an
integration of the wave function squared over r,, )

also distinctly shows two peaks.
The specific configurations present in the wave
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functions reveal themselves in all the structure
functions of these nuclei. The details of the charge
and mass density distributions, charge form factors,
pair correlation functions, momentum distributions
of particles, and amplitudes of clusterization can be
found in [5, 6] for “He and °Li nuclei (see also
reviews [ 1, 2]). As for four-particle nuclei, we depict
only the charge form factor and the charge density
distribution of '"Be, and the charge density
distribution of '°C. The detailed analysis of the rest
structure functions of '’Be, as well as those of '°C,
will be published separately. In Fig. 3, a, the
calculated charge form factor of '“Be is compared
with that of °He nucleus, and with the experimental
form factor of “He. Since neutrons are not charged,
the charge form factor of *He is explained mainly by
the presence of an a-particle in this nucleus. In the
Helm approximation [12],
(47):

F.(q)=F,
where F, (qz) is the form factor of the "point-like"

°He

(4°)-Fo (1)

a-particle moving in *He nucleus, and F, He(qQ) is

the charge form factor of the a-particle (‘He
nucleus) itself. In particular, the dip of the charge
form factor of °He is present due to the dip observed

_ 13
=
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10
] 1OBe
10°
10 : :
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a

in the form factor of “He (at the same ¢, ), while
the factor F, (qz) is a slowly decreasing function in

this region of ¢” [5, 6]. At the same time, a relation
similar to Eq. (1), but for the charge form factor of

""Be (F,DBc(qz) F, (qz).F%(qz), where F, (qz)
is the form factor of the "point-like" a-particle in
""Be nucleus), results in an additional dip at ¢, ~5

F, (q2 )‘ in the case of '’Be has the dip

~

fm?, because

at this ¢’ due to the structure of the density
distribution of two "point-like" a-particles (forming
a *Be cluster) inside '’Be nucleus. The slope of a
form factor at the zero transferred momentum is
known to be determined by the charge r.m.s. radius
of the corresponding nucleus, and the slopes are seen
to vary in accordance with the inequality
R, ., =1679 fm < R o 22.068  fm <

ch, ch

<R ~2.357 fm. The difference in radii is

ch, ""Be
obviously observed due to the fact that the charge in
He is present mainly in the a-particle moving
around the center of mass of the nucleus (at an
average distance ~ 1.18 fm [5, 6]), while '’Be has
two a-particles, each being at an average distance of
~1.65 fm from the center of mass of the nucleus.

Fig. 3. Calculated charge form factors of *He and '°Be (a) and the charge density distributions (normalized to 1) for
the same nuclei (). The dashed lines are the interpolations of the experimental data for “He [13].

In Fig. 3, b, the charge density distributions
(normalized as J-nch (r)dr =1, where r denotes the
distance from the center of mass of a nucleus) are
compared for ‘He ("free" a-particle), “He (an a-
particle moving around the center of mass of the

nucleus), and '“Be (two a-particles forming a *Be
cluster surrounded by two extra neutrons). The

calculation of n,, (r) for °He is carried out within

the Helm approximation
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nch, ‘He (7") = Ina, ‘He (
where n_ (r)

distribution of a “point-like” o-particle in the ‘He
nucleus [5, 6], and n,, (r) is the experimental

r—r1|) n“He(rl) dry,
the

2

is calculated density

charge density distribution [13] of the a-particle
itself (with the normalization to 1). In calculations of
the '°Be charge density distribution, the expression

similar to (2) is used, but with n_ (|r —rl|) under

19Be
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the integral. As it is seen from Fig. 3, b, the charge
density n,, (r) for ""Be goes lower at short distances
than that for ®°He nucleus due to the normalization

jnch (r)dr =1. If one normalize these distributions
to Z or Ze, then n,(r) for ""Be should be greater

than n,, (r) for *He at all the distances.

The charge density distribution of '°C is
calculated as

2
nch, 10¢ (I") = Ejna, 10 (|l’ - l'1|) Mo (]/i) drl +
1
+§Inp, ¢ (|r—r1|) I’lp(rl) dr,, 3)

where n (r) denotes the calculated density

distribution of the “point-like” a-particle inside '°C
nucleus, nAHe(r) is the charge distribution of ‘He

taken from the experiment [13], n e (r) means the

calculated density distribution of “point-like” extra
protons in '°C, and n,(r) is the charge distribution
of the proton itself derived from the experimental
form factor (see, for example, [14]). Note that the
charge density distribution of '°C at large distances
decreases more slowly than that of '°Be nucleus due
to the fact that '°C has a lower binding energy (about
3.73 MeV within the four-particle model), and due
to the presence of charged extra protons (Fig. 4).
Because of the normalization to unity, n,, (r) of '°C

goes lower than n,(r) of '"Be at intermediate
distances, but, near the origin, n,, () of '°C is again

a little bit greater. If normalized to the charge of the
nucleus, 7, () of '°C should be, of course, greater

than n,, () of "’Be at all the distances.
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Fig. 4. Calculated charge density distribution (normalized
to 1) for '°C nucleus. The dashed line is the interpolation
of the experimental data for “He [13].
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Asymptotics of the density distributions
in *He and °Li nuclei

The asymptotic behavior of the density
distributions at large distances from a nucleus
determines the sharpness of the nucleus boundary.
The asymptotics of the density distributions of
particles constituting °®He and °Li nuclei are
essentially different [9] because of different breakup
thresholds for these loosely bound near-threshold
three-particle systems — the two-particle threshold
for °Li (an a-particle plus a deuteron), and the three-
particle threshold for °He (an a-particle plus two
neutrons). It should be noted that, in the case of the
asymptotics for °Li, the decisive role is played by the
nearness of the ground state to the two-particle
threshold. For example, the asymptotics of the
density distributions of the three-nucleon systems
[15, 16], due to their greater binding energies, are
essentially three-particle ones in spite of the fact that
these nuclei have two-particle breakup thresholds.

Consider the density distribution n,(r) of a

"point-like" a-particle in these nuclei (see Fig. 5, a
for °Li nucleus; similar dependences for “He can be

found in [9]). In both nuclei, the density n, (r) has

two modes of behavior: the central "core" (< 0.5 fm,
originated from the "cigar" configuration), and a
"halo" (<£2.0fm, arising from the "triangle"
configuration). The asymptotic region starts only
after »>2.0 fm, where the density distribution
becomes small. It can be shown [9] that the
asymptotics of n,(r) in °Li nucleus (having the
two-particle threshold) has the form

na,"u (’”),_zC Mo, asymp (r) =

_

w2 (24kr _
zca(%i)—”’z( 5 )—> a(ﬁLi)—eXp( M;f,r)),
(24,kr)" (24,7)" "
“)
where Wfﬂyl(z) is the Whittaker function,
2
n= 4 ”’h ‘ize =(.30024 is the Coulomb parameter,
K
2 E(°Li)-E(d
K:\/ b (hz) ( )‘;0.3078 fm!,  and
m, +m,+m )
A, =———"—=. A comparison of the calculated

m,+m,
density distribution n,(r) with asymptotics (4)
gives Ca((’Li) =4.88 fm™. In the insert in Fig. 5, a,

the ratio n, (r)/n,, 4, (r) is shown for °Li nucleus.

NUCLEAR PHYSICS AND ATOMIC ENERGY Vol. 12, No.1 2011
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Fig. 5. Density distribution n, (r) of the a-particle in °Li (a), and the halo proton density distribution

in the same nucleus (b). In the inserts, the corresponding ratios 7 (r) / 7 gy () are shown.

It is seen that the asymptotic expression (4)
comes into force already after »~2fm. Our
variational calculation (with ~300 Gaussian
functions) is reliable up to » ~8fm, where n, (r)

becomes of the order of ~107.

The wave function of °He nucleus has an
essentially different asymptotics [9] (the three-particle
Merkuriev's one [17, 18]). As a result, we have for the

density distribution n, () of this nucleus

na °He (r) - na asymp (r) EM(CQO +&+...j,
> r—o ’ (Cll")z ar
(5)
E(°H 2m +
where a = ‘ ( e)‘ma( il ma) ~1.491 fm™.

W’m,
A comparison of asymptotics (5) with the result of

numerical calculations of n_ %(”) enables us to

determine the constants C  =0.10 fm?

ald —
C, =243 fm”. Since C,, << C,,, the both terms in

and

~

relation (5) are competitive at intermediate distances
and should be taken into account. The asymptotic
dependence (5) is confirmed by our calculations
(with ~300 Gaussian functions) up to ~8 fm, where
the density decreases to ~10.

In the asymptotic expression for the proton

density distribution oo (r) of SLi nucleus, one has

to keep two competitive terms,

np, SLi (r) -

r—0

w? (2A Kr)

-7, % pl

np,asymp(r) Cpl(éLi) (2/\ K”)z

pl

exp(—ZApzar)

+C,, (“Li) 0 W)z 2
P2
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exp(—ZAplkr)
W

exp(—2Ap2ar)

— 7/
(2A,,0r)

(6)

since the exponential arguments almost coincide due

to A, x=0.46286 fm' and A, =0.46294 fm™!

(here, a=,/2 g ! 7 is the deuteron parameter,

m_ +m, +m
_ P n a
and A, =—"——"—,
m

-C 1(6Li)

-C, C,.(°Li)

>

(24,5

m, +m
A, =—"—).

m

a n

The

above-mentioned coincidence can be rewritten in
terms of energies:

E(GLi);(

m, +m)(m +m,)

E(d)=~

which is valid only for °Li and a deuteron. In
Fig. 5, b, the density distribution n, o (r) of the

m, (mp +m, + ma)

proton in °Li is shown. In the insert, the ratio
between noo (r) and its asymptotic (6) is depicted

with the use of Cpl("Li)EO.565 fm™  and
Cp2(6Li) =(.250 fm~ determined by a comparison

of (6) with the result of numerical calculations of
n, (,Li(r). Similar regularities are valid for the

neutron density distribution n (r) in ®Li nucleus

[9]. The asymptotics is confirmed by numerical
calculations with ~300 basis functions up to ~16 fm,
where it becomes ~10” (or ~107 as compared with
the values near the maximum).

The asymptotic behavior of a halo neutron

density distribution »_ 6Hc(r) in ®He is determined

by the three-particle Merkuriev asymptotics [17, 18]
of the wave function of the system. It can be shown
that the asymptotics of n_ . (r) is

11
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exp(—br)( C, j
6 , =————=C =4,
nn, He (r)r:z)nn‘ax)mp (I") (b"‘)5 n0 + bl” +
(7
‘E(éHe)‘ m,
where  b=4 e =0.61303 fm"'. The

constants C,, =0.04fm> and C,, =0.11fm> are

determined from a comparison of asymptotics (7)
with the result of numerical calculations of

nn,éHe(r).
Note that 7_ (,Hc(r) in °He [3, 6] has no explicit

decrease near the origin as the halo proton
distribution oo (r) in SLi does, see Fig. 5, b (the
°Li
demonstrates the same decrease). In the both nuclei,
the interactions between the halo nucleons were used
with an essential repulsion, but it is not the only
reason for the decrease under consideration to be
present. An additional important reason for this is
the fact that the "triangle" configuration is more
probable in °Li than in °He (see Fig. 1), and this
configuration makes small contribution to the
density distribution near the origin.

neutron  density  distribution »n , (r) in

Asymptotics of the amplitudes of clusterization

Consider the amplitude of clusterization [19] for

the deuteron in °Li nucleus
© 0,030

fm

o~ 0,025

If,(P)!

0,020+

0,015+

0,010+

0,005 4

0,000+
0 2 4

6
p, fm

£(p)=[4,(r,) ®(r,,.p)dr,,, (8)

which depends on the distance o of the a-particle

from the center of mass of °Li. In (8), ¢, (rﬂp)
denotes the deuteron wave function, and CD(rnp,p) is

the wave function of °Li nucleus within the three-
particle model. The quantity ‘ 1, (p) ‘2 (Fig. 6) is the

coefficient of clusterization (see also [20]) reflecting

the probability density “to find the deuteron” in °Li
at a definite distance p from the a-particle. There

are two peaks, distinctly seen in the p’|f,(p) ‘2

profiles, which correspond to the configurations of
“cigar” (short distances) and “triangle” (at ~3 +
+ 4 fm) present in °Li (as well as °He) nuclei. The
integral

™ =[] £,(p) [dp ©)

gives the probability “to find a deuteron” in the °Li
nucleus. It appears to be 0.69 (about 0.09 is the
contribution of the “cigar” (first peak), and about
0.60 comes from the “triangle” (second peak)).

0.4
3 32
S 21,0
= 7
= 0,31 <08 /
Q — 7
P ) 0,64
Q

p, fm

b

Fig. 6. The squared amplitude of clusterization (8) (solid line), and p* | 1o ( p)|2 (dashed line) for °Li nucleus (a). The

same amplitude (8) multiplied by p (solid line), and the ratio f, (p)/ f.,,., (©)
shown by the dashed line in the insert (b).

The deuteron wave function squared is close to
the correlation function g,, (r) [6], and this is valid
not only for the °Li nucleus but for the most of a
few-nucleon systems (see, for example, the

calculations for three- and four-nucleon nuclei [15,
21]). Thus, one can consider the modified value

12

Seri tone (P)  similar to (8), where we put

instead of ¢,(r). Then the value

gnp (7")

2 « ]
Fosa- ( p)‘ is to be the “deuteron cluster

coefficient of clusterization. Its profile is close to

17.(p) > (see [6]). The corresponding modified

NUCLEAR PHYSICS AND ATOMIC ENERGY Vol. 12, No.1 2011



STRUCTURE PECULIARITIES OF THREE- AND FOUR-CLUSTER NUCLEI

coefficient C\"") s defined by the relation similar

to (9), and it is equal to 0.74 (0.08 due to the “cigar”
configuration, and 0.66 comes from the “triangle”).
The modified coefficients of clusterization enable
one to estimate the probability for the dineutron
cluster to exist in a °He nucleus, although a free
dineutron does not exist. We find the coefficient

CCM) = 0.73. It is natural that the “cigar”
configuration plays somewhat greater role in °He
than that in °Li, because the np subsystem in °Li
prefer to be a deuteron cluster, because V,, in the

triplet state is (on average) more attractive than V

in the singlet state.

The analysis of the asymptotics of amplitude (8)
is of a special interest due to the fact [2, 20] that it
determines the asymptotic constant for the process
Li —» a + d and, as a result, the corresponding
nuclear vertex constant and the spectroscopic factor.
The asymptotical behavior of (8) is known to be

fa (p)p:)oofdsﬂsymp (,D) = CApilWﬂ]‘ 1 (21(',0)‘7::O

2

—>C,p" exp(—Kp—nln(ZKp)) (10)

P>

(the notation is the same as in (3)). In Fig. 6, b, we
show the ratio f,(p)/ f,,., (#) calculated for one

of the sets of potentials proposed in [6] (the dashed
line). Comparing the results of our calculation of

f,(p) (reliable up to p ~15 fim with 300 Gaussian

functions of the basis used) with the asymptotics
(10) (coming into force already at ~6 fm), we have

C,=0.693 fm"?, or \J4r C,=2.46 fm™? and this
is consistent with other calculations [2].

Some remarks about the asymptotics
of form factors

Recently, we have analyzed and explained the
form factors of °Li and °He nuclei in details both at
low and high transferred momenta [9]. A special
attention is paid to the problem of the asymptotics of
the form factors of °Li and *He nuclei. It is shown
that, even within a non-relativistic problem and
commonly used interaction potentials, the

asymptotics of the form factors is a non-trivial
problem. For rapidly decreasing (in the momentum
representation) potentials, the asymptotics of a form

0" o,

q
which is valid only for slowly decreasing v(g) . For

factor cannot be expressed as ~[

rapidly decreasing potentials, the problem is much
more sophisticated even for a two-particle system,
nothing to say about the many-body ones. For
example, for the attractive Gaussian potential

V(r) =-g exp(— (r/ro )2 ), it can be shown for the

two-particle wave function in the momentum
representation to have the asymptotic behavior
- ]dq

#exp —5 [ |/In g +a”
P pﬂpz + aZ OCansl g
(11)

(here, o’ 52,u|E|/h2). The proof of this fact, and

the results for the general case of an arbitrary
potential will be considered separately. And this
asymptotical dependence of the wave function
determines the asymptotics of the formfactor

F(q)=ft//*(p)l//( j(;il;f
Lf))“ [22].

1
2P

w(p)

m,
m, +m,

p+ q which

q

To summarize, we note that the developed
approach enables us to study the structure functions
of light nuclei and to analyze the asymptotics of
these structure functions both in the coordinate and
momentum representations. Considering o-clusters
like a-particles, and appropriately fitting a-o- and o-
nucleon potentials, one can essentially simplify the
many-body problem without significant lost of
accuracy in studying the structure of a number of
light nuclei.

differs essentially from ~[
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CTPYKTYPHI OCOBJIUBOCTI TPHU- 1 YOTUPUKJIACTEPHUX SIJIEP
*He, °Li TA "Be, '°C

B. €. I'puniok, 1. B. Cumenor

Jocmimkeno ocobmusocti crpykrypn saep *He i °Li B pamkax Tpruactiakosoi mogeni (o« + N + N). Ha ocHoBi
4OTHpHYACTHHKOBOI Moaeni (a + a + N + N) npoananisoaHo cTpykrypy siaep ' "Be i '°C i mopiBHsHO 3i cTpyKTYpOIo
He i °Li. Po3paxoBaHO if IOSCHEHO PO3MOMLIN 3apsAa0BOi TyCTHHH i hopM-(akTopn 3asHadeHHX saep. JOCIimKeHo
PO3MOMITKM TYCTHHM eKCTpaHykIoHiB y ''Be i '°C Ta mopiBHSHO 3 po3paxOBaHMMH PO3NOJiTaMH HYKIIOHIB Tallo siep
SHe i °Li. BukoHaHO meTambHE AOCTIIKEHHS aCUMITOTHK PO3MOAiNiB ryctunu B sapax °He i °Li. [IpoanamizoBano
ACUMITOTHYHY IOBEAIHKY aMIUIITYA KiacTepu3auii Ta oO4MCIeHO Koe(illieHTH KiacTepusauili A JeHTPOHHOTO
Knactepa B °Li i nineiitponsoro kiactepa B °He. V po3paxyHkax BUKOPHCTAHO BapialiiiHuii METOJ 3 ONTHMi30BAHUMH
rayccoilHUMU Oa3nucami.

Kuouoei crosa: *He, °Li, "Be, '°C, posnonin rycrunn 3apsny, hopm-daxrop, koedimieHT kiactepusatii.
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STRUCTURE PECULIARITIES OF THREE- AND FOUR-CLUSTER NUCLEI

CTPYKTYPHBIE OCOBEHHOCTHM TPEX- U YETBIPEXKJIACTEPHBIX SIJEP
*He, °Li U "Be, °C

b. E. I'puniok, U. B. Cumenor

W3yueHbl 0COOEHHOCTH CTPYKTYpPHI siliep He i °Li B paMkax TpexyactuuHoM Mmognenu (oo + N + N). Ha ocHose
ueThIpexyacTHuHOi Mozemu (a + o + N + N) mpoaHaTusupoBaHa CTpykTypa saep ' 'Be u '°C i mpoBeneHO cpaBHEHHE
co crpykrypoii ‘He u °Li. PaccunmrtaHbl H OOGBACHEHBI pACIpeleNeHHs 3apAI0BOH IUIOTHOCTH ¥ (opM-HaKTOpsI
YIOMSHYTHIX siiep. McclenoBaHBl pachpesielieHus IUIOTHOCTH OSKCTpaHykioHoB B ''Be m '°C u cpaBHeHBI
PACCUNTAHHBIMU pACIIPEICICHHsME HYKIOHOB Tano B sapax ‘He m °Li. IIpoaHanM3MpoBaHO aCHMIITOTHYECKOE
IOBEJICHHE AMIUTUTY/] KIIACTEPH3AIIMH U BBIYHCICHBI KOO(DMUIHEHTHI KIIaCTepU3ALMH IS AeHTPOHHOTO KiacTepa B Li
U JMHeHTpoHHOro KiacTepa B °He. B pacueTax MCHONB30BAH BAPHAIMOHHBI METOJ C ONTHMH3MPOBAHHBIMH
rayccouIaIbHBIMHI 0a3UCaMH.

Kniouesvie cnosa: °He, °Li, '"Be, '°C, pacmpenemenme mioTHOCTH 3apsima, (opM-(akrop, Kod(hGHIHEHT
KJIaCTepU3alllu.
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