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Within a three-particle model (α + N + N), structure peculiarities of 6He and 6Li halo nuclei are studied. Within a 

four-particle model (α + α + N + N), the structure of 10Be and 10С nuclei is analized and compared with that of 6He and 
6Li. The charge density distributions and form factors of these nuclei are calculated and explained. The density 
distributions of extra nucleons in 10Be and 10С are studied and compared with the calculated distributions of halo 
nucleons in 6He and 6Li. A detailed study of the asymptotics of the density distributions is carried out for the three-
particle 6He and 6Li nuclei. Asymptotic behavior of the amplitudes of clusterization is analyzed, and the coefficients of 
clusterization are calculated for the deuteron cluster in 6Li and the dineutron cluster in 6He. The variational method with 
optimized Gaussian bases is used in calculations. 
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Introduction 
 

A number of light nuclei are usually treated, from 
a qualitative point of view, as systems consisting 
from a few α-particles and some extra nucleons. The 
physical reason for a successful description of the 
nuclei within such models is comparatively small 
binding energies of these systems relative to the α-
particle binding energy and comparatively large 
average distances between clusters. The widely used 
three-particle model [1, 2] for six-nucleon halo 
nuclei 6He and 6Li is competitive with the 
approaches [3, 4] starting from six nucleon degrees 
of freedom. It is important that, if the parameters of 
the NN- and Nα-potentials are fitted to reproduce the 
energies and radii of the nuclei (in addition to the 
scattering phase shifts), the three-particle model for 
6He and 6Li nuclei becomes [5, 6] a quantitative 
theory which enables to analyze the structure 
functions of the nuclei. In this work, we compare 
some characteristic features of the structure 
functions of the halo nuclei 6He and 6Li between 
themselves and with those of 10Be and 10C nuclei, 
considered within the four-particle model, where 
two extra nucleons move around two α-particles. In 
particular, the density distributions and form factors 
are studied, and the general properties of the 
probability densities of these nuclei are compared. 

We use the variational method with Gaussian 
bases [7, 8] and the optimization of the bases [5, 6] 
to achieve a high accuracy in calculations, and we 
show that this approach allows one to study even the 
asymptotics of the structure functions [9] in both the 
coordinate and momentum representations. The 
obtained asymptotics for the density distributions of 
particles in 6He and 6Li nuclei are confirmed by 
analytical estimations. The problem of the 
asymptotics of form factors is analyzed, and the non-
trivial character of the asymptotics for systems with 
Gaussian potentials is established. 

General properties of the structure functions 
of  6He, 6Li, and 10Be, 10C nuclei  

 
The main properties of the structure functions of 

6He and 6Li nuclei are explained within a three-
particle model by the presence of two configurations 
in their wave functions (the "triangle" and "cigar" 
configurations [1, 2, 5, 6]). In our calculations, we 
use three-particle Hamiltonians with NN- and Nα-
potentials [5, 6] reproducing the experimental phase 
shifts at low energies simultaneously with the 
ground state energies and charge r.m.s. radii of the 
nucleus under consideration. This is achieved by the 
use of potentials with local and non-local (separable) 
terms. A method is developed to calculate phase 
shifts without a problem of singularities inherent to 
the variable phase approach with this kind of 
potentials. To find the structure functions of 10Be 
and 10С nuclei, we use also an αα-potential of the 
same type (local and non-local terms). This 
potential, in agreement with the experiment, does 
not bind the system of two α-particles (8Be), 
although a small enhancement of the attraction (or 
switching off the Coulomb repulsion) results in its 
binding, reproduces (qualitatively) the binding 
energies of the systems of three (12С) and four (16O) 
α-particles, and enables one to describe the S-state 
phase shift of the αα-scattering at low energies. In 
addition, it explains (together with new versions of 
Nα-potentials) the binding energy of 10Be (about 
8.387 MeV in the four-particle model) and its charge 
radius 2.357(21) fm. It should be noted that other 
versions of αα-potential (in particular, the Ali-
Bodmer potentials [10]) can also be used for 
studying the structure of 10Be and 10С nuclei. The 
four-particle approach for studying the 10Be and 10С 
nuclei may be competitive with the one starting from 
all the nucleon degrees of freedom [11].  

We recall that the variational method with the 
Gaussian bases [7, 8, 2] enables us to obtain the 
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wave function ( ),Φ r ρ  of 6He and 6Li nuclei with 
high accuracy [5, 6] in an explicit form of a 
superposition of Gaussian functions suitable for 
further usage and analysis. In Fig. 1, the probability 

density ( ) ( )
22 2, Ω Φ ,P r r dρ ρ= ∫ r ρ  is shown for 

6He and 6Li nuclei, where r  is the distance between 
the halo nucleons, and ρ  is the distance between the 

α-particle and the center of mass of the halo 
nucleons. The averaging over the angles is usually 
done to reduce the number of variables for pictures. 
In the case of four-particle systems, with one more 
Jacobi coordinate variable in the four-particle wave 
function ( ), ,NN ααΦ r ρ r  (where rαα  is the relative 
distance between α-clusters), we make an additional 
integration over one of them.  
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Fig. 1. Probability density ( , )P r ρ  for 6He (a) and 6Li (b) nuclei in the ground state. 
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Fig. 2. Probability density ( , )P r ρ  for the extra nucleons of 10Be (a) and 10C (b) nuclei in the ground state. 

 
In Fig. 2, for 10Be and 10С nuclei, we depict the 

quantity ( ) ( )
22 2, , ,P r r d d αα ααρ ρ= Ω Φ∫ ∫ r r ρ r  with an 

additional integration over the relative coordinate 
ααr  between two α-particles. Here, r  is again a 

distance between extra nucleons, and ρ  is the 
distance between the centers of mass of the two 
extra nucleons and two α-particles. As it is clearly 
seen from the figures, the extra nucleons of the both 
four-particle nuclei also reveal two main 
configurations: a "cross" one (instead of a "cigar" in 

the three-particle nuclei), where extra nucleons are 
at the opposite sides from the α-α axis, and a 
"tetrahedron" (instead of a "triangle" in 6He and 6Li 
nuclei), where two extra nucleons form a two-
particle cluster moving around the center of mass of 
the nucleus together with αα-cluster. It should be 
noted that similar probability distribution calculated 
for α-particles in 10Be or 10С nucleus (with an 
integration of the wave function squared over NNr ) 
also distinctly shows two peaks. 

The specific configurations present in the wave 
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functions reveal themselves in all the structure 
functions of these nuclei. The details of the charge 
and mass density distributions, charge form factors, 
pair correlation functions, momentum distributions 
of particles, and amplitudes of clusterization can be 
found in [5, 6] for 6He and 6Li nuclei (see also 
reviews [1, 2]). As for four-particle nuclei, we depict 
only the charge form factor and the charge density 
distribution of 10Be, and the charge density 
distribution of 10С. The detailed analysis of the rest 
structure functions of 10Be, as well as those of 10С, 
will be published separately. In Fig. 3, a, the 
calculated charge form factor of 10Be is compared 
with that of 6He nucleus, and with the experimental 
form factor of 4He. Since neutrons are not charged, 
the charge form factor of 6He is explained mainly by 
the presence of an α-particle in this nucleus. In the 
Helm approximation [12], 

 

( ) ( ) ( )6 4
2 2 2

He He
F q F q F qα≅ ⋅ ,              (1) 

 

where ( )2F qα  is the form factor of the "point-like" 

α-particle moving in 6He nucleus, and ( )4
2

He
F q  is 

the charge form factor of the α-particle (4He 
nucleus) itself. In particular, the dip of the charge 
form factor of 6He is present due to the dip observed 

in the form factor of 4He (at the same 2
minq ), while 

the factor ( )2F qα  is a slowly decreasing function in 

this region of 2q  [5, 6]. At the same time, a relation 
similar to Eq. (1), but for the charge form factor of 
10Be ( ( ) ( ) ( )10 4

2 2 2
Be He

F q F q F qα≅ ⋅ , where ( )2F qα  

is the form factor of the "point-like" α-particle in 
10Be nucleus), results in an additional dip at 2

min ~ 5q  

fm-2, because ( )2F qα  in the case of 10Be has the dip 

at this 2
minq  due to the structure of the density 

distribution of two "point-like" α-particles (forming 
a 8Be cluster) inside 10Be nucleus. The slope of a 
form factor at the zero transferred momentum is 
known to be determined by the charge r.m.s. radius 
of the corresponding nucleus, and the slopes are seen 
to vary in accordance with the inequality 

4, 
1.679

ch He
R ≅  fm <  6, 

2.068
ch He

R ≅   fm  < 

< 10, 
2.357

ch Be
R ≅  fm. The difference in radii is 

obviously observed due to the fact that the charge in 
6He is present mainly in the α-particle moving 
around the center of mass of the nucleus (at an 
average distance ~ 1.18 fm [5, 6]), while 10Be has 
two α-particles, each being at an average distance of 
~1.65 fm from the center of mass of the nucleus.
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Fig. 3. Calculated charge form factors of 6He and 10Be (a) and the charge density distributions (normalized to 1) for 
the same nuclei (b). The dashed lines are the interpolations of the experimental data for 4He [13]. 

 
In Fig. 3, b, the charge density distributions 

(normalized as ( ) 1chn r d =∫ r , where r  denotes the 

distance from the center of mass of a nucleus) are 
compared for 4He ("free" α-particle), 6He (an α-
particle moving around the center of mass of the 
nucleus), and 10Be (two α-particles forming a 8Be 
cluster surrounded by two extra neutrons). The 
calculation of ( )chn r  for 6He is carried out within 
the Helm approximation 

 

( ) ( ) ( )6 6 41 1 1, He , He He
  

ch
n r n n r d

α
≅ −∫ r r r ,        (2) 

where ( )6, He
n r
α

 is the calculated density 

distribution of a “point-like” α-particle in the 6He 
nucleus [5, 6], and ( )4 He

n r  is the experimental 
charge density distribution [13] of the α-particle 
itself (with the normalization to 1). In calculations of 
the 10Be charge density distribution, the expression 
similar to (2) is used, but with ( )10 1, Be

n
α

−r r  under 
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the integral. As it is seen from Fig. 3, b, the charge 
density ( )chn r  for 10Be goes lower at short distances 
than that for 6He nucleus due to the normalization 

( ) 1chn r d =∫ r . If one normalize these distributions 

to Z or Ze, then ( )chn r  for 10Be should be greater 
than ( )chn r  for 6He at all the distances. 

The charge density distribution of 10C is 
calculated as. 

( ) ( ) ( )10 10 41 1 1, C , C He

2   
3ch

n r n n r d
α

≅ − +∫ r r r  

 

( ) ( )10 1 1 1, C

1   
3 pp

n n r d+ −∫ r r r ,              (3) 

where ( )10, C
n r
α

 denotes the calculated density 

distribution of the “point-like” α-particle inside 10C 
nucleus, ( )4 He

n r  is the charge distribution of 4He 

taken from the experiment [13], ( )10, Cp
n r  means the 

calculated density distribution of “point-like” extra 
protons in 10C, and ( )pn r  is the charge distribution 
of the proton itself derived from the experimental 
form factor (see, for example, [14]). Note that the 
charge density distribution of 10C at large distances 
decreases more slowly than that of 10Be nucleus due 
to the fact that 10C has a lower binding energy (about 
3.73 MeV within the four-particle model), and due 
to the presence of charged extra protons (Fig. 4). 
Because of the normalization to unity, ( )chn r  of 10C 
goes lower than ( )chn r  of 10Be at intermediate 

distances, but, near the origin, ( )chn r  of 10C is again 
a little bit greater. If normalized to the charge of the 
nucleus, ( )chn r  of 10C should be, of course, greater 
than ( )chn r  of 10Be at all the distances. 
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Fig. 4. Calculated charge density distribution (normalized 
to 1) for 10C nucleus. The dashed line is the interpolation 
of the experimental data for 4He [13]. 

Asymptotics of the density distributions 
in 6He and 6Li nuclei 

 
The asymptotic behavior of the density 

distributions at large distances from a nucleus 
determines the sharpness of the nucleus boundary. 
The asymptotics of the density distributions of 
particles constituting 6He and 6Li nuclei are 
essentially different [9] because of different breakup 
thresholds for these loosely bound near-threshold 
three-particle systems – the two-particle threshold 
for 6Li (an α-particle plus a deuteron), and the three-
particle threshold for 6He (an α-particle plus two 
neutrons). It should be noted that, in the case of the 
asymptotics for 6Li, the decisive role is played by the 
nearness of the ground state to the two-particle 
threshold. For example, the asymptotics of the 
density distributions of the three-nucleon systems 
[15, 16], due to their greater binding energies, are 
essentially three-particle ones in spite of the fact that 
these nuclei have two-particle breakup thresholds. 

Consider the density distribution ( )n rα  of a 
"point-like" α-particle in these nuclei (see Fig. 5, a 
for 6Li nucleus; similar dependences for 6He can be 
found in [9]). In both nuclei, the density ( )n rα  has 
two modes of behavior: the central "core" ( 0.5≤ fm, 
originated from the "cigar" configuration), and a 
"halo" ( 2.0≤ fm, arising from the "triangle" 
configuration). The asymptotic region starts only 
after 2.0r ≥  fm, where the density distribution 
becomes small. It can be shown [9] that the 
asymptotics of ( )n rα  in 6Li nucleus (having the 
two-particle threshold) has the form 

 

( ) ( )6 , , asympLi r
n r n rαα →∞

→ ≡  

 

( )
( )

( )
( ) ( )

( ) ( )

1
2

2
, 6 6

2 2 1

2 exp 2
,

2 2r

W r r
C Li C Li

r r

αη α
α α η

α α

λ κ λ κ
λ κ λ κ

−

+→∞

−
≡ →

(4) 
where ( )1

2, W zη−  is the Whittaker function, 
2

 
2 0.30024d Zeαμη
κ

= ≅  is the Coulomb parameter, 

( ) ( )6
 

2

2
0.3078d E Li E dαμ

κ
−

= ≅  fm-1, and 

p n

p n

m m m
m m

α
αλ

+ +
=

+
. A comparison of the calculated 

density distribution ( )n rα  with asymptotics (4) 

gives ( )6 4.88C Liα ≅  fm-2. In the insert in Fig. 5, a, 

the ratio ( ) ( ), asympn r n rα α  is shown for 6Li nucleus.  
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Fig. 5. Density distribution ( )n rα  of the α-particle in 6Li (a), and the halo proton density distribution 

in the same nucleus (b). In the inserts, the corresponding ratios ( ) ( ) asympn r n r  are shown. 
 

It is seen that the asymptotic expression (4) 
comes into force already after ~ 2r fm. Our 
variational calculation (with ~300 Gaussian 
functions) is reliable up to ~ 8r fm, where ( )n rα  
becomes of the order of ~10-9. 

The wave function of 6He nucleus has an 
essentially different asymptotics [9] (the three-particle 
Merkuriev's one [17, 18]). As a result, we have for the 
density distribution ( )n rα  of this nucleus 

 

( ) ( ) ( )
( )

6 5
2

1
, 0, He

exp
... ,asympr

ar Cn r n r C
arar
α

α αα →∞

− ⎛ ⎞→ ≡ + +⎜ ⎟
⎝ ⎠

(5) 

where 
( ) ( )6

2

2
1.491n

n

E He m m m
a

m
α α+

= ≅  fm-1. 

A comparison of asymptotics (5) with the result of 
numerical calculations of ( )6, He

n r
α

 enables us to 

determine the constants 0 0.10Cα ≅ fm-3 and 

1 2.43Cα ≅ fm-3. Since 0 1C Cα α<< , the both terms in 
relation (5) are competitive at intermediate distances 
and should be taken into account. The asymptotic 
dependence (5) is confirmed by our calculations 
(with ~300 Gaussian functions) up to ~8 fm, where 
the density decreases to ~10-9. 

In the asymptotic expression for the proton 
density distribution ( )6, Lip

n r  of 6Li nucleus, one has 

to keep two competitive terms, 
 

( ) ( ) ( ) ( )
( )

1
2

6

2
1, 6

, 1 2, Li
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p
p asymp pp r

p
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r
η κ
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−

→∞

Λ
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Λ
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( )

26
2 2

2

exp 2

2
p
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p

r
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r

α

α →∞

− Λ
+ →

Λ
, 

( ) ( )
( ) ( ) ( ) ( )

( )
1 26 6

1 2 22 1
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exp 2 exp 2
,

22
p p
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η

κ α

ακ
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− Λ − Λ
→ +

ΛΛ

(6) 
since the exponential arguments almost coincide due 
to 1 0.46286p κΛ ≅ fm-1 and 2 0.46294p αΛ ≅ fm-1 

(here, 22  /  np dα μ ε=  is the deuteron parameter, 

and 1
p n

p

m m m
m

α

α

+ +
Λ = , 2 ).p n

p
n

m m
m
+

Λ =  The 

above-mentioned coincidence can be rewritten in 
terms of energies: 
 

( ) ( )( )
( ) ( ) ( )6 5

3
p n n

n p n

m m m m
E Li E d E d

m m m m
α

α

+ +
≅ ≈

+ +
, 

 

which is valid only for 6Li and a deuteron. In 
Fig. 5, b, the density distribution ( )6, Lip

n r  of the 

proton in 6Li is shown. In the insert, the ratio 
between ( )6, Lip

n r  and its asymptotic (6) is depicted 

with the use of ( )6
1 0.565pC Li ≅ fm-3 and 

( )6
2 0.250pC Li ≅ fm-3 determined by a comparison 

of (6) with the result of numerical calculations of 
( )6, Lip

n r . Similar regularities are valid for the 

neutron density distribution ( )6, Lin
n r  in 6Li nucleus 

[9]. The asymptotics is confirmed by numerical 
calculations with ~300 basis functions up to ~16 fm, 
where it becomes ~10-9 (or ~10-7 as compared with 
the values near the maximum). 

The asymptotic behavior of a halo neutron 
density distribution ( )6, Hen

n r  in 6He is determined 

by the three-particle Merkuriev asymptotics [17, 18] 
of the wave function of the system. It can be shown 
that the asymptotics of ( )6, Hen

n r  is 
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( ) ( ) ( )
( )

6 5
2

1
, 0, He

exp
...n

n asymp nn r

br Cn r n r C
brbr→∞

− ⎛ ⎞→ ≡ + +⎜ ⎟
⎝ ⎠

, 

(7) 

where 
( )6

2

 
4 0.61303nE He m

b = ≅  fm-1. The 

constants 0 0.04nC ≅ fm-3 and 1 0.11nC ≅ fm-3 are 
determined from a comparison of asymptotics (7) 
with the result of numerical calculations of 

( )6, Hen
n r . 

Note that ( )6, Hen
n r  in 6He [5, 6] has no explicit 

decrease near the origin as the halo proton 
distribution ( )6, Lip

n r  in 6Li does, see Fig. 5, b (the 

neutron density distribution ( )6 Lin
n r  in 6Li 

demonstrates the same decrease). In the both nuclei, 
the interactions between the halo nucleons were used 
with an essential repulsion, but it is not the only 
reason for the decrease under consideration to be 
present. An additional important reason for this is 
the fact that the "triangle" configuration is more 
probable in 6Li than in 6He (see Fig. 1), and this 
configuration makes small contribution to the 
density distribution near the origin. 

 

Asymptotics of the amplitudes of clusterization 
 

Consider the amplitude of clusterization [19] for 
the deuteron in 6Li nucleus 

 

( ) ( ) ( )*  ,d d np np npf r dρ φ= Φ∫ r ρ r ,                 (8) 
 

which depends on the distance ρ  of the α-particle 
from the center of mass of 6Li. In (8), ( )d nprφ  

denotes the deuteron wave function, and ( ),npΦ r ρ  is 

the wave function of 6Li nucleus within the three-
particle model. The quantity ( ) 2

 df ρ  (Fig. 6) is the 

coefficient of clusterization (see also [20]) reflecting 
the probability density “to find the deuteron” in 6Li 
at a definite distance ρ  from the α-particle. There 
are two peaks, distinctly seen in the ( ) 22

dfρ ρ  

profiles, which correspond to the configurations of 
“cigar” (short distances) and “triangle” (at ~3 ÷ 
÷ 4 fm) present in 6Li (as well as 6He) nuclei. The 
integral 
 

( )6 2( )   Li
d dC f dρ= ∫ ρ                          (9) 

 

gives the probability “to find a deuteron” in the 6Li 
nucleus. It appears to be 0.69 (about 0.09 is the 
contribution of the “cigar” (first peak), and about 
0.60 comes from the “triangle” (second peak)).
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Fig. 6. The squared amplitude of clusterization (8) (solid line), and ( ) 22
dfρ ρ  (dashed line) for 6Li nucleus (a). The 

same amplitude (8) multiplied by ρ  (solid line),  and the ratio ( ) ( )/d asympf fρ ρ  
shown by the dashed line in the insert (b). 

 
The deuteron wave function squared is close to 

the correlation function ( )npg r  [6], and this is valid 
not only for the 6Li nucleus but for the most of a 
few-nucleon systems (see, for example, the 
calculations for three- and four-nucleon nuclei [15, 
21]). Thus, one can consider the modified value 

( )6 , Li d cluster
f ρ

−
 similar to (8), where we put 

( )npg r  instead of ( )d rφ . Then the value 

( )6

2

, Li d cluster
f ρ

−
 is to be the “deuteron cluster” 

coefficient of clusterization. Its profile is close to 
( ) 2

 df ρ  (see [6]). The corresponding modified 
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coefficient 
6( )Li

d clusterC −  is defined by the relation similar 
to (9), and it is equal to 0.74 (0.08 due to the “cigar” 
configuration, and 0.66 comes from the “triangle”). 
The modified coefficients of clusterization enable 
one to estimate the probability for the dineutron 
cluster to exist in a 6He nucleus, although a free 
dineutron does not exist. We find the coefficient 

6( )He
nn clusterC − = 0.73. It is natural that the “cigar” 

configuration plays somewhat greater role in 6He 
than that in 6Li, because the np subsystem in 6Li 
prefer to be a deuteron cluster, because npV  in the 
triplet state is (on average) more attractive than nnV  
in the singlet state. 

The analysis of the asymptotics of amplitude (8) 
is of a special interest due to the fact [2, 20] that it 
determines the asymptotic constant for the process 
6Li → α + d and, as a result, the corresponding 
nuclear vertex constant and the spectroscopic factor. 
The asymptotical behavior of (8) is known to be 

 

( ) ( ) ( )1
, 1, 

2

2d d asymp Af f C W
ρ ρη

ρ ρ ρ κρ−

→∞ →∞−
→ ≡ →  

 

( )( )1 exp ln 2AC
ρ

ρ κρ η κρ−

→∞
→ − −            (10) 

 
(the notation is the same as in (3)). In Fig. 6, b, we 
show the ratio ( ) ( )/d asympf fρ ρ  calculated for one 
of the sets of potentials proposed in [6] (the dashed 
line). Comparing the results of our calculation of 

( )df ρ  (reliable up to ~ 15ρ  fm with 300 Gaussian 
functions of the basis used) with the asymptotics 
(10) (coming into force already at ~6 fm), we have 

0.693AC =  fm-1/2, or 4  2.46ACπ =  fm-1/2, and this 
is consistent with other calculations [2]. 
 

Some remarks about the asymptotics 
of form factors 

 
Recently, we have analyzed and explained the 

form factors of 6Li and 6He nuclei in details both at 
low and high transferred momenta [9]. A special 
attention is paid to the problem of the asymptotics of 
the form factors of 6Li and 6He nuclei. It is shown 
that, even within a non-relativistic problem and 
commonly used interaction potentials, the 

asymptotics of the form factors is a non-trivial 
problem. For rapidly decreasing (in the momentum 
representation) potentials, the asymptotics of a form 

factor cannot be expressed as ( ) 1

2~
A

v q
q

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

[22], 

which is valid only for slowly decreasing ( )v q . For 
rapidly decreasing potentials, the problem is much 
more sophisticated even for a two-particle system, 
nothing to say about the many-body ones. For 
example, for the attractive Gaussian potential 
( ) ( )( )2

0exp rrgrV −−= , it can be shown for the 
two-particle wave function in the momentum 
representation to have the asymptotic behavior 

 

( )
1
2 2 2

02 2
exp ln

or p

p Const

C qp r dq
gp p
αψ

α→∞

⎛ ⎞⎛ ⎞+⎜ ⎟→ − ∫ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

(11) 
(here, 2 22 /Eα μ≡ ). The proof of this fact, and 
the results for the general case of an arbitrary 
potential will be considered separately. And this 
asymptotical dependence of the wave function 
determines the asymptotics of the formfactor 

( ) ( )
( )

* 2
3

1 2 2
m dF q p

m m
ψ ψ

π

⎛ ⎞
= +⎜ ⎟+⎝ ⎠
∫

pp q  which 

differs essentially from ( ) 1

2~
A

v q
q

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

[22].  

To summarize, we note that the developed 
approach enables us to study the structure functions 
of light nuclei and to analyze the asymptotics of 
these structure functions both in the coordinate and 
momentum representations. Considering α-clusters 
like α-particles, and appropriately fitting α-α- and α-
nucleon potentials, one can essentially simplify the 
many-body problem without significant lost of 
accuracy in studying the structure of a number of 
light nuclei. 
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СТРУКТУРНІ  ОСОБЛИВОСТІ  ТРИ-  І  ЧОТИРИКЛАСТЕРНИХ  ЯДЕР 
6He,  6Li  ТА  10Be,  10C 

 
Б. Є. Гринюк,  І. В. Сименог 

 
Досліджено особливості структури ядер 6He і 6Li в рамках тричастинкової моделі (α + N + N). На основі 

чотиричастинкової моделі (α + α + N + N) проаналізовано структуру ядер 10Be і 10С  і порівняно зі структурою 
6He і 6Li. Розраховано й пояснено розподіли зарядової густини і форм-фактори зазначених ядер. Досліджено 
розподіли густини екстрануклонів у 10Be і 10С та порівняно з розрахованими розподілами нуклонів гало ядер 
6He і 6Li. Виконано детальне дослідження асимптотик розподілів густини в ядрах 6He і 6Li. Проаналізовано 
асимптотичну поведінку амплітуд кластеризації та обчислено коефіцієнти кластеризації для дейтронного 
кластера в 6Li і дінейтронного кластера в 6He. У розрахунках використано варіаційний метод з оптимізованими 
гауссоїдними базисами. 

Ключові слова: 6He, 6Li, 10Be, 10С, розподіл густини заряду, форм-фактор, коефіцієнт кластеризації. 
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СТРУКТУРНЫЕ  ОСОБЕННОСТИ  ТРЕХ-  И  ЧЕТЫРЕХКЛАСТЕРНЫХ  ЯДЕР 
6He,  6Li  И 10Be, 10C 

 
Б. Е. Гринюк,  И. В. Сименог 

 
Изучены особенности структуры ядер 6He і 6Li в рамках трехчастичной модели (α + N + N). На основе 

четырехчастичной модели (α + α + N + N) проанализирована структура ядер 10Be и 10С и проведено сравнение 
со структурой 6He и 6Li. Рассчитаны и объяснены распределения зарядовой плотности и форм-факторы 
упомянутых ядер. Исследованы распределения плотности экстрануклонов в 10Be и 10С и сравнены с 
рассчитанными распределениями нуклонов гало в ядрах 6He и 6Li. Проанализировано асимптотическое 
поведение амплитуд кластеризации и вычислены коэффициенты кластеризации для дейтронного кластера в 6Li 
и динейтронного кластера в 6He. В расчетах использован вариационный метод с оптимизированными 
гауссоидальными базисами. 

Ключевые слова: 6He, 6Li, 10Be, 10С, распределение плотности заряда, форм-фактор, коэффициент 
кластеризации. 
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