![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
On the possibility of nanofluids using as a coolant
L. A. Bulavin, D. A. Gavryushenko, V. I. Kovalchuk, V. F. Korolovich
Kyiv Taras Shevchenko National University, Kyiv, Ukraine
Abstract: Heat-transfer properties of "water - nanofluids" liquid system, which contains high-purity single-walled nanotubes SWCNTs, have been investigated. It was found that the relation of heat conductivity factor between the nano-structuring liquid and the classical one has linear dependency in concentration range of С = 0 ÷ 0.3 mg/l. We propose the possibility of nanofluids using as a coolant, based on the performed experiment.
Keywords: nanofluids, single-walled nanotubes, heat conductivity, coolant.
References:1. Maxwell J. C. Treatise on Electricity and Magnetism. 2-nd ed. (Oxford: Clarendon, 1881) 251 p.
2. Xu J., Yu B., Zou M., Xu P. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J. Phys. D: Appl. Phys. 39 (2006) 4486. https://doi.org/10.1088/0022-3727/39/20/028
3. Yang S. P., Choi S. U. S. Effects of Various Parameters on Nanofluid Thermal Conductivity. J. Heat Transfer 129 (2007) 617. https://doi.org/10.1115/1.2712475
4. Putnam S. A., Cahill D. G., Braun P. V. et al. Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99 (2006) 084308. https://doi.org/10.1063/1.2189933
5. Keblinski P., Eastman J. A., Cahill D. G. Nanofluids for thermal transport. Materials Today 8 (2005) 36. https://doi.org/10.1016/S1369-7021(05)70936-6
6. Chon C. H., Kihm K. D., Lee S. P., Choi S. U. S. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 87 (2005) 153107. https://doi.org/10.1063/1.2093936
7. Hong T. K., Yang H. S., Choi C. J. Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 97 (2005) 064311. https://doi.org/10.1063/1.1861145
8. Kang H. U., Kim S. H. Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume. Experimental Heat Transfer 19 (2006) 181. https://doi.org/10.1080/08916150600619281
9. Li C. H., Peterson G. P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99 (2006) 084314. https://doi.org/10.1063/1.2191571
10. Hwang D., Hong K. S., Yang H. -S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta 455 (2007) 66. https://doi.org/10.1016/j.tca.2006.12.006
11. Putnam S. A., Cahill D. G., Braun P. V. et al. Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99 (2006) 084308. https://doi.org/10.1063/1.2189933
12. Hwang D., Hong K. S., Yang H. -S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta 455 (2007) 66. https://doi.org/10.1016/j.tca.2006.12.006
13. Katok K. V., Tertykh V. A., Brichka S. Y. et al. Pyrolytic synthesis of carbon nanostructures on Ni, Co, Fe/MCM-41 catalysts. J. Mater. Chem. Physics 96 (2006) 396. https://doi.org/10.1016/j.matchemphys.2005.07.029
14. Prylutska S. V., Grynyuk I. I., Matyshevska O. P. et al. Estimation of multi-walled carbon nanotubes toxicity in vitro. Physica E 40 (2008) 2565. https://doi.org/10.1016/j.physe.2007.07.017
15. Дуров В. А., Агеев Е. П. Термодинамическая теория растворов неэлектролитов (Москва: Изд. МГУ, 1987) 246 с.
16. Bulavin L. A., Gavryushenko D. A., Sysoev V. M., Yakunov P. A. Calculating the Chemical Potential of Components of a Binary Solution in a Plane-Parallel Pore. Rus. J. Phys. Chem. A 84 (2010) 225. https://doi.org/10.1134/S0036024410020123
17. Cherevko K. V., Gavryushenko D. A., Sysoev V. M. The influence of the chemical reactions on the diffusion phenomena in the cylincrical systems bounded with the membranes. J. Mol. Liquids 127 (2006) 71. https://doi.org/10.1016/j.molliq.2006.03.018