![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Dissipative processes in 18O + 9Be and 18O + 181Ta reactions at Fermi energies
B. Erdemchimeg1,2, T. I. Mikhailova1, A. G. Artyukh1, G. Kaminski1,3, Yu. M. Sereda1,4, M. Colonna5, M. Di Toro5, H. H. Wolter6
1Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
2Mongolian National University, NRC, Ulaanbaatar, Mongolia
3Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
4Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
5Laboratorio Nazionale del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy
6Faculty of Physics, University of Munich, Garching, Germany
Abstract: A study of peripheral nuclear collisions at Fermi energies with transport models is presented. It is motivated by experiments devoted to studying of isotopic yields in the reactions 18O on 9Be and 181Ta at E/A = 35 MeV measured at very forward angles. The data show a two-component structure, one centered at beam velocity ("direct component") and another at lower velocities ("dissipative component"). It is shown that the transport calculations describe the general features of the dissipative component of the reaction. In our calculations we take into account the evaporation of the excited, primary projectile-like residues due to statistical decay. This improves the comparison of the results of the calculations with experiment. We find substantially different behavior of the dissipative component in the reactions with light and heavy target.
Keywords: deep inelastic reactions, transport models, Fermi energy.
References:1. Souliotis G. A. et al. Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies. Phys. Rev. Lett. 91 (2003) 022701. https://doi.org/10.1103/PhysRevLett.91.022701
2. Tassan-Got L., Stephan C. Deep inelastic transfers: A way to dissipate energy and angular momentum for reactions in the Fermi energy domain. Nucl. Phys. A 524 (1991) 121. https://doi.org/10.1016/0375-9474(91)90019-3
3. Tarasov O. Analysis of momentum distributions of projectile fragmentation products. Nucl. Phys. A 734 (2004) 536. https://doi.org/10.1016/S0375-9474(04)90339-9
4. Bacri Ch. O. et al. Measurements in the beam direction of the 40Ar projectile fragmentation at 44 MeV/A. Nucl. Phys. A 555 (1993) 477. https://doi.org/10.1016/0375-9474(93)90297-B
5. Borrel V. et al. The decay modes of proton drip-line nuclei with A between 42 and 47. Z. Phys. A 344 (1992) 135. https://doi.org/10.1007/BF01291696
6. Lahmer W. et al. Transfer and fragmentation reactions of 14N at 60 MeV/u. Z. Phys. A 337 (1990) 425. https://doi.org/10.1007/BF01294980
7. Gelbke C. K. et al. Influence of intrinsic nucleon motion on energy spectra and angular distributions for 16O-induced reactions at 20 MeV/A. Phys. Lett. B 70 (1977) 415. https://doi.org/10.1016/0370-2693(77)90402-6
8. Notani M. et al. Projectile fragmentation reactions and production of nuclei near the neutron drip line. Phys. Rev. C 76 (2007) 044605. https://doi.org/10.1103/PhysRevC.76.044605
9. Mikhailova T. et al. Investigation of Dissipative Collisions with Transport Models. Romanian Jour. Physics 52 (2008) 875.
10. Artukh A. G. et al. Forward-Angle Yields of 2 ≤ Z ≤ 11 Isotopes in the Reaction of 18O (35 A MeV) with 9Be. Phys. of Atom. Nuclei 65 (2002) 393. https://doi.org/10.1134/1.1465479
11. Artukh A.G. et al. Forward-Angle Yields of 2 ≤ Z ≤ 11 Isotopes in the Reaction of 22Ne (40 A MeV) with Be. Proc. Int. Symp. on Exotic Nuclei (Lake Baikal, Russia, 2001). Ed. by Yu. E. Penionzhkevich and E. A. Cherepanov (Singapore: World Scientific P. C., 2002) p. 269.
12. Mikhailova T. I. et al. Competition of Break-Up and dissipative processes in peripheral collisions at Fermi energies. Nucl. Physics and Atom. Energy 10 (2009) 45. https://jnpae.kinr.kyiv.ua/10.1/Articles_PDF/jnpae-2009-10-0045-Mikhailova.pdf
13. Mikhailova T. I. et al. Fragment production in peripheral heavy ion collisions at Fermi energies in transport models. Int. Journal of Modern Physics E 19 (2010) 678. https://doi.org/10.1142/S0218301310015096
14. Goldhaber A. S. Statistical models of fragmentation processes. Phys. Lett. B 53 (1974) 306. https://doi.org/10.1016/0370-2693(74)90388-8
15. Bondorf J. P. et al. Statistical multifragmentation of nuclei. Phys. Rep. 257 (1995) 133. https://doi.org/10.1016/0370-1573(94)00097-M
16. Bertsch G. F. Das Gupta S. A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160 (1988) 189. https://doi.org/10.1016/0370-1573(88)90170-6
17. Baran V. et al. Reaction dynamics with exotic nuclei. Phys. Rep. 410 (2005) 335. https://doi.org/10.1016/j.physrep.2004.12.004
18. Wilczynski J. Nuclear molecules and nuclear friction. Phys. Lett. B 47 (1973) 484. https://doi.org/10.1016/0370-2693(73)90021-X