![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Search for double β-decays of 96Ru and 104Ru with high purity Ge γ-spectrometry
P. Belli1, R. Bernabei1,2, F. Cappella3,4, R. Cerulli5, F. A. Danevich6, S. d'Angelo1,2, A. Incicchitti3, M. Laubenstein5, O. G. Polischuk6, D. Prosperi3,4, V. I. Tretyak6
1Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione Roma "La Sapienza", Rome, Italy
4Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
5Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
6Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Experiment to search for double β-decay of 96Ru and 104Ru is in progress in the underground Gran Sasso National Laboratories of the INFN (Italy) with the help of ultra-low background high purity (HP) Ge γ spectrometry. After 2162 h of data taking with 473 g ruthenium sample in low-background set-ups with HP Ge detectors, new improved limits on 2β processes in 96Ru and 104Ru have been established on the level of 1018-1019 yr.
Keywords: double beta decay, 96Ru, 104Ru.
References:1. Zdesenko Yu. G. Rev. Mod. Phys. 74 (2002) 663; https://doi.org/10.1103/RevModPhys.74.663
Elliot S. R., Vogel P. Annu. Rev. Nucl. Part. Sci. 52 (2002) 115; https://doi.org/10.1146/annurev.nucl.52.050102.090641
Vergados J. D. Phys. Rep. 361 (2002) 1; https://doi.org/10.1016/S0370-1573(01)00068-0
Elliot S. R., Engel J. J. Phys. G: Nucl. Part. Phys. 30 (2004) R183; https://doi.org/10.1088/0954-3899/30/9/R01
Avignone F. T., III, King G. S., Zdesenko Yu. G. New J. Phys. 7 (2005) 6; https://doi.org/10.1088/1367-2630/7/1/006
Ejiri H. J. Phys. Soc. Jpn. 74 (2005) 2101; https://doi.org/10.1143/JPSJ.74.2101
Klapdor-Kleingrothaus H. V. Int. J. Mod. Phys. E 17 (2008) 505; https://doi.org/10.1142/S0218301308009823
Avignone F. T., III, Elliott S. R., Engel J. Rev. Mod. Phys. 80 (2008) 481. https://doi.org/10.1103/RevModPhys.80.481
2. Klapdor-Kleingrothaus H. V., Krivosheina I. V. Mod. Phys. Lett. A 21 (2006) 1547. https://doi.org/10.1142/S0217732306020937
3. Tretyak V. I., Zdesenko Yu. G. At. Data Nucl. Data Tables 61 (1995) 43; https://doi.org/10.1016/S0092-640X(95)90011-X
At. Data Nucl. Data Tables 80 (2002) 83. https://doi.org/10.1006/adnd.2001.0873
4. Audi G., Wapstra A. H., Thibault C. Nucl. Phys. A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003
5. Firestone R. B. et al. Table of Isotopes. 8th edition (New York: John Wiley & Sons, 1996 and CD update (1998)).
6. ENSDF at NNDC site: http://www.nndc.bnl.gov/
7. Bohlke J. K. et al. J. Phys. Chem. Ref. Data 34 (2005) 57. https://doi.org/10.1063/1.1836764
8. Sujkowski Z., Wycech S. Phys. Rev. C 70 (2004) 052501. https://doi.org/10.1103/PhysRevC.70.052501
9. Winter R. G. Phys. Rev. 100 (1955) 142. https://doi.org/10.1103/PhysRev.100.142
10. Voloshin M. B., Mitselmakher G. V., Eramzhyan R. A. JETP Lett. 35 (1982) 656.
11. Bernabeu J., de Rujula A., Jarlskog C. Nucl. Phys. B 223 (1983) 15. https://doi.org/10.1016/0550-3213(83)90089-5
12. Norman E. B. Phys. Rev. C 31 (1985) 1937. https://doi.org/10.1103/PhysRevC.31.1937
13. Belli P. et al. Eur. Phys. J. A 42 (2009) 171. https://doi.org/10.1140/epja/i2009-10867-5
14. Information from website: http://www.heraeus.com
15. Feldman G. J., Cousins R. D. Phys. Rev. D 57 (1998) 3873. https://doi.org/10.1103/PhysRevD.57.3873
16. Amsler C. et al. Phys. Lett. B 667 (2008) 1. https://doi.org/10.1016/j.physletb.2008.07.018
17. Nelson W. R. et al. SLAC-Report-265 (Stanford, 1985).
18. Ponkratenko O. A. et al. Phys. At. Nucl. 63 (2000) 1282; https://doi.org/10.1134/1.855784
19. Vergados J. D. Nucl. Phys. B 218 (1983) 109. https://doi.org/10.1016/0550-3213(83)90477-7
20. Staudt A., Muto K., Klapdor-Kleingrothaus H. V. Phys. Lett. B 268 (1991) 312. https://doi.org/10.1016/0370-2693(91)91582-G
21. Hirsch M., Muto K., Oda T., Klapdor-Kleingrothaus H. V. Z. Phys. A 347 (1994) 151. https://doi.org/10.1007/BF01292371
22. Suhonen J., Aunola M. Nucl. Phys. A 723 (2003) 271. https://doi.org/10.1016/S0375-9474(03)01311-3
23. Rath P. K., Chandra R., Chaturvedi K. et al. Phys. Rev. C 80 (2009) 044303. https://doi.org/10.1103/PhysRevC.80.044303
24. Raina P. K., Shukla A., Singh S. et al. Eur. Phys. J. A 28 (2006) 27. https://doi.org/10.1140/epja/i2005-10280-2
25. Suhonen J. Phys. Rev. C 48 (1993) 574. https://doi.org/10.1103/PhysRevC.48.574
26. Rumyantsev O. A., Urin M. H. Phys. Lett. B 443 (1998) 51. https://doi.org/10.1016/S0370-2693(98)01291-X
27. Domin P., Kovalenko S., Simkovic F., Semenov S. V. Nucl. Phys. A 753 (2005) 337. https://doi.org/10.1016/j.nuclphysa.2005.03.003
28. Raduta A. A., Raduta C. M. Phys. Lett. B 647 (2007) 265. https://doi.org/10.1016/j.physletb.2007.02.007