Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2010, volume 11, issue 4, pages 362-366.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.12.2010.
PDF Full text (en)
https://doi.org/10.15407/jnpae2010.04.362

Search for double β-decays of 96Ru and 104Ru with high purity Ge γ-spectrometry

P. Belli1, R. Bernabei1,2, F. Cappella3,4, R. Cerulli5, F. A. Danevich6, S. d'Angelo1,2, A. Incicchitti3, M. Laubenstein5, O. G. Polischuk6, D. Prosperi3,4, V. I. Tretyak6

1Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy
2Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione Roma "La Sapienza", Rome, Italy
4Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
5Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
6Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Experiment to search for double β-decay of 96Ru and 104Ru is in progress in the underground Gran Sasso National Laboratories of the INFN (Italy) with the help of ultra-low background high purity (HP) Ge γ spectrometry. After 2162 h of data taking with 473 g ruthenium sample in low-background set-ups with HP Ge detectors, new improved limits on 2β processes in 96Ru and 104Ru have been established on the level of 1018-1019 yr.

Keywords: double beta decay, 96Ru, 104Ru.

References:

1. Zdesenko Yu. G. Rev. Mod. Phys. 74 (2002) 663; https://doi.org/10.1103/RevModPhys.74.663

Elliot S. R., Vogel P. Annu. Rev. Nucl. Part. Sci. 52 (2002) 115; https://doi.org/10.1146/annurev.nucl.52.050102.090641

Vergados J. D. Phys. Rep. 361 (2002) 1; https://doi.org/10.1016/S0370-1573(01)00068-0

Elliot S. R., Engel J. J. Phys. G: Nucl. Part. Phys. 30 (2004) R183; https://doi.org/10.1088/0954-3899/30/9/R01

Avignone F. T., III, King G. S., Zdesenko Yu. G. New J. Phys. 7 (2005) 6; https://doi.org/10.1088/1367-2630/7/1/006

Ejiri H. J. Phys. Soc. Jpn. 74 (2005) 2101; https://doi.org/10.1143/JPSJ.74.2101

Klapdor-Kleingrothaus H. V. Int. J. Mod. Phys. E 17 (2008) 505; https://doi.org/10.1142/S0218301308009823

Avignone F. T., III, Elliott S. R., Engel J. Rev. Mod. Phys. 80 (2008) 481. https://doi.org/10.1103/RevModPhys.80.481

2. Klapdor-Kleingrothaus H. V., Krivosheina I. V. Mod. Phys. Lett. A 21 (2006) 1547. https://doi.org/10.1142/S0217732306020937

3. Tretyak V. I., Zdesenko Yu. G. At. Data Nucl. Data Tables 61 (1995) 43; https://doi.org/10.1016/S0092-640X(95)90011-X

At. Data Nucl. Data Tables 80 (2002) 83. https://doi.org/10.1006/adnd.2001.0873

4. Audi G., Wapstra A. H., Thibault C. Nucl. Phys. A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

5. Firestone R. B. et al. Table of Isotopes. 8th edition (New York: John Wiley & Sons, 1996 and CD update (1998)).

6. ENSDF at NNDC site: http://www.nndc.bnl.gov/

7. Bohlke J. K. et al. J. Phys. Chem. Ref. Data 34 (2005) 57. https://doi.org/10.1063/1.1836764

8. Sujkowski Z., Wycech S. Phys. Rev. C 70 (2004) 052501. https://doi.org/10.1103/PhysRevC.70.052501

9. Winter R. G. Phys. Rev. 100 (1955) 142. https://doi.org/10.1103/PhysRev.100.142

10. Voloshin M. B., Mitselmakher G. V., Eramzhyan R. A. JETP Lett. 35 (1982) 656.

11. Bernabeu J., de Rujula A., Jarlskog C. Nucl. Phys. B 223 (1983) 15. https://doi.org/10.1016/0550-3213(83)90089-5

12. Norman E. B. Phys. Rev. C 31 (1985) 1937. https://doi.org/10.1103/PhysRevC.31.1937

13. Belli P. et al. Eur. Phys. J. A 42 (2009) 171. https://doi.org/10.1140/epja/i2009-10867-5

14. Information from website: http://www.heraeus.com

15. Feldman G. J., Cousins R. D. Phys. Rev. D 57 (1998) 3873. https://doi.org/10.1103/PhysRevD.57.3873

16. Amsler C. et al. Phys. Lett. B 667 (2008) 1. https://doi.org/10.1016/j.physletb.2008.07.018

17. Nelson W. R. et al. SLAC-Report-265 (Stanford, 1985).

18. Ponkratenko O. A. et al. Phys. At. Nucl. 63 (2000) 1282; https://doi.org/10.1134/1.855784

Tretyak V. I. in preparation.

19. Vergados J. D. Nucl. Phys. B 218 (1983) 109. https://doi.org/10.1016/0550-3213(83)90477-7

20. Staudt A., Muto K., Klapdor-Kleingrothaus H. V. Phys. Lett. B 268 (1991) 312. https://doi.org/10.1016/0370-2693(91)91582-G

21. Hirsch M., Muto K., Oda T., Klapdor-Kleingrothaus H. V. Z. Phys. A 347 (1994) 151. https://doi.org/10.1007/BF01292371

22. Suhonen J., Aunola M. Nucl. Phys. A 723 (2003) 271. https://doi.org/10.1016/S0375-9474(03)01311-3

23. Rath P. K., Chandra R., Chaturvedi K. et al. Phys. Rev. C 80 (2009) 044303. https://doi.org/10.1103/PhysRevC.80.044303

24. Raina P. K., Shukla A., Singh S. et al. Eur. Phys. J. A 28 (2006) 27. https://doi.org/10.1140/epja/i2005-10280-2

25. Suhonen J. Phys. Rev. C 48 (1993) 574. https://doi.org/10.1103/PhysRevC.48.574

26. Rumyantsev O. A., Urin M. H. Phys. Lett. B 443 (1998) 51. https://doi.org/10.1016/S0370-2693(98)01291-X

27. Domin P., Kovalenko S., Simkovic F., Semenov S. V. Nucl. Phys. A 753 (2005) 337. https://doi.org/10.1016/j.nuclphysa.2005.03.003

28. Raduta A. A., Raduta C. M. Phys. Lett. B 647 (2007) 265. https://doi.org/10.1016/j.physletb.2007.02.007