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A FIELD-THEORETICAL TREATMENT OF TWO-NUCLEON SYSTEMS:
NUCLEON-NUCLEON SCATTERING AND DEUTERON PROPERTIES

© 2010 E. O. Dubovyk
Institute of Electrophysics and Radiation Technologies, National Academy of Sciences of Ukraine, Kharkiv

The “clothing” procedure in quantum field theory is applied for the description of nucleon-nucleon (N —N)
scattering and deuteron properties. We consider the system of interacting fermion and meson fields with the Yukawa-
type couplings to introduce trial interactions between "bare" particles. Special unitary transformations are used to
express the primary total Hamiltonian through new creation/annihilation operators for the so-called clothed particles
(these quasiparticles of our approach). We are focused upon the Hermitian and energy-independent interactions
(quasipotentials) between the clothed nucleons, being built up in the second order in the coupling constants. The
interactions are the kernels of integral equations for the T-matrix of N — N scattering and the deuteron wave function in
momentum space. We discuss distinctions between our quasipotentials and the Bonn potential. Numerical solutions of
these equations are compared with those by the Bonn group.
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Introductory remarks

The main purpose of this work is to develop a
consistent  field-theoretic approach to the
description of two nucleon systems using the
method of unitary “clothing” transformations
(UCTs) (see the survey [1] and refs. therein). We
start with the total Hamiltonian for meson-
nucleon system

H=H(a)=H,(a)+H,(a)=

where the free part H,(«) and the interaction
V(a) depend on creation (destruction) operators

a'(a) in the so-called bare particle represen-

tation (BPR). To be more definite, let us consider
fermions (nucleons and antinucleons) and bosons
(7—, n—, p—, w—mesons, etc.) interacting via
the Yukawa-type couplings for scalar (s),
pseudoscalar (ps) and vector (v) mesons (see, €.g.,
[2]). Then, using a trick prompted by the
derivation of Eq. (7.5.22) in [3] to eliminate in a

(1) proper way the vector-field component ¢°, we
= H,(a)+V(a)+massand vertex counterterms, have V(a)=V,+V, +V, with
v, =g ) i im e, )
v, =ig, | & pE w0, ), ()
v, =] df{gvv?@)w(fc)gofm ¥ fm l?(f)dﬂvw(f)%”(f)} +
)& A I S A =
+I dx{ 2,7;2 WXy (W (X)yp (X) + 4’1”12 l//(x)ffol-w(x)t//(x)ao,-w(X)} 4)

with the boson fields ¢, and the fermion field v ,
where @' (X)=0"p)(X¥)—0"¢p!(X) is the tensor of
the vector field included. The mass (vertex)

counterterms are given by Egs. (32) - (33) of Ref.
[4] (the difference V(a)—V(a) where a primary

interaction V («) is derived from V(a) replacing

the "physical" coupling constants by "bare" ones). It
should be noted that a second term in Eq. (4) is not a
Lorentz scalar. The appearance of such terms is
typical of theories with derivative couplings or/and
spin j>1. A more detailed discussion of this issue

can be found in [5, 6].
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Analytic expressions for the quasipotentials
in momentum space

The transition to the clothed particle
representation (CPR) is doing with help of a unitary

transformation @, =W aW', where W =expR with
R" =—R . Its generator R is chosen in such a way to
remove all “bad” terms from V(«) (by definition

[1], the latter prevent the bare vacuum and the bare
one-particle states to be H eigenstates). After this,
the primary Hamiltonian H(«) can be represented

in the form H(a)=K,.(a,)+K,(a,)=K(a,).
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The free part of the new decomposition is
determined by K, («,)=H (a,) while K, contains
only interactions responsible for physical processes

K*®(a,)=K(NN — NN)+K(NN — NN)+K(NN — NN)+K(bN —> bN)

It is important to realize that operator K(c,) is
the same Hamiltonian H(«) but written in other
representation. Accordingly [1, 4] the operator

in the system. In particular, the 2 <> 2 interactions
of interest stem from the commutator [R,V],

namely:
)

responsible for N — N interaction in the CPR has
the following structure:

K(NN - NN) =Y K,(NN —> NN)=K,,,
b

K,(NN — NN) = IZ dp'\dp',dp,dp,V,(1,251,2)b (16 (2)b,.(1)b,(2),
u

where the symbol Z denotes the summation over
"

nucleon spin projections, 1=1{p,, 4}, etc.

(6)

For our evaluations of the c-number matrices V,

we have employed some experience from Refs. [1,
4] to get in the second order in the coupling
constants

1 m’
v, (1,251,2)= o(p +p,—-p,—p,)v,(1,251,2), 7
f )= 2y JEEEL (B'\+P's= b= Bs) v ) (7
g 1
VA-(1’,2’;1,2) = __Sl’_‘(ﬁrl)u(ﬁl)ﬁ1’7(]3,2)”(132)’ (8)
2 (pl -p 1) —m;
g, 1
v, (1,251,2) = ==u(p' ysu(p) ——— 5 u(p',)rsu(p,), ()]
2 (pl _p 1) _mps
v, (1,251,2) = l% x
2 (p 1_p1) —m,
X|:Z7(f),l){(gv + /)7, — 2fl;1 (p’1+p1)v}“(ﬁl)t_’(ﬁlz){(gv + /7" _Zf_;l(p'z"'pz)vku(ﬁz)_
a7 =1 _ fV / -
w8+ 1)y, =5 P+ Py (u(p)
xﬁ(ﬁ'2>;—;1{{(ﬁ;+ﬁ;—fal—ﬁ2)7v—(p'1+p'2—pl —pz)V}u(pz)} (10)
where m, the mass of the clothed boson (its The corresponding relativistic and properly

physical value) and §=gq,7". In the framework of

the isospin formalism one needs to add the factor
7(1)7(2) in the corresponding expressions.

The derivation of the vector-boson contribution
(10) is discussed more detail in [5, 6]. One should
stress, that the first UCT enables us to remove the
non-invariant terms (second term in Eq. (4)) directly
in the Hamiltonian. In our opinion, such a
cancellation, is a pleasant feature of the CPR.
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symmetrized N — N interaction, the kernel of
integral equations for the N-N bound and
scattering states, is determined by

(Q

b.(PDb(PK,(NN — NN)b! ()bl (P,)|2) =
=V, (1,251,2) =V, (2,152, 1) + ¥, (1,232, 1) +

+,(2,151,2). (11)
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+jz 12|‘NN|34)

Application to the elastic N — N scattering <34| R( E)|12> 14
14
In order to evaluate the N —N scattering
amplitude for the collision energy £ we will regard R B
a field operator T in the CPR, that meets the With R(E)=R(E)/2 and K.y =K,, /2, where

equation the operation IZ means the summation over

34

(E+i0) =K, + K, (E+i0=K,)"'T,,,,,(E +10), nucleon polarizations and the p.v. integration over

ClO[h

(12) nucleon momenta.

. . After the angular-momentum decomposition
and whose matrix elements <NN cion (B +,10)|NN> Eq. (14) splits into to the set of integral equations
on the energy shell E=E, +E,=E, +E, can be
expressed through the phase shifts and mixing R (P p) =V (P p)+
parameters.
. . 2) o 2
If in Eq. (12) we approximate K, by K;”, then +z p.VI q dq 75 RS (¢, p) (15)
g

initial task of evaluating the CPR matrix elements 2 2E ,—E,)
can be reduced to solving the equation
to be solved for each submatrix R™" composed of

2)+ the elements Ry, (p,p)=Ry (p'p;2E,), where

, > (13) E,= \p>+m* the collision energy in the center of

mass system (c.m.s.), m the nucleon mass.
In our case such a decomposition means the
transition to the matrix elements between the states

(1,2|1,

2)=(r2K

+(1,2|K o (E+i0-K,)'T,

For practical applications one prefers to work
with the corresponding R-matrix that meets the

equation |p(lS)JM J>, which have been constructed as
(I'2'|R(E)|12) = (1I'2'| K | 12) + common eigenstates of the operator K, and the
| field linear- and angular-momentum operators
11 - -
| pUS)IM )= [d pY,, (5)(ImSM | M, )[2 st |SMS)b (Baa)b' (~pu)| ). (16)

with the unit vector p=p/p.

The deuteron equation

Now, we consider a K (e, ) eigenstate from the NN sector, to be represented as

W) = 3 [dBidpswr s (Butt Bott )b (Brsn)b' (Botr)|€2) (17)

Myt

In the approximation K, = K;z) , the eigenvalue ' where M, =2m—¢, the deuteron mass and ¢, the

> - E|V/NN> has the form deuteron binding energy.
Results of numerical calculations
[KF * KNN]|WNN> - E|WNN> ) (18) and their discussion
In turn the deuteron state at rest can be written as the In order to compare our calculations and those
superposition obtained in [7] with the potential B, first of all, one
° . needs to regularize the expressions (8) - (10) by
‘y/:f > = jdq q’|qUDIM )y (q), (19)  introducing the phenomenological cutoffs
1=0,2 ¢
2 2 K
with coefficients ' (q) = <q(ll)1M|1//NN> that satisfy  F,(p',p) = {%} =F[(p'-p)] 1)
»b PP

the equations

in the c.m.s taken from [2, 6]. It means the

! (p)= M, —2E, ZJ qq’ 7 (p.@)wi (q),  substitution

(20) (D't | v | P anny) =
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=-F(p, p)[vb(l’,2’; L2)+v, (2,152, 1)] . (22)
However, such a regularization does not remove
all distinguish between our model and the Bonn

potential. Replacing in equations (22) |

f;Z

4m*

(E, = E ) u(p)ror, = 8o Ju(p)a(=p)ly'y" — " lu(=p),

F(p' - pyl[(p' - py —mi]
by
~F-(F - PN~ )+t ]

and neglecting the tensor-tensor term

(23)

we obtain approximate expressions that with the |
common factor (2z)7°m’/E E, instead of

Q2r)°m/ JE ,E, are equivalent to Egs. (E.21) -
(E. 23) from [2] (for details see [5]).

The best-fit parameters for the two models. The row Potential B (UCT) taken from Table A.1 [7]
(obtained by solving Egs. (15, 20) with a least squares fitting to Bonn values). All masses and cutoff parameters
are in MeV, and n, =1 except for n, =n, =2. The values in brackets for p—meson denote the ratio f » / 9,

Model Meson T n P ® ) o, T=0(T=1)
Potential B g2 /4 [f/g] 14.4 3 0.9 [6.1] 24.5 2.488 18.3773(8.9437)
A 1700 1500 1850 1850 2000 2000(1900)
m 138.03 548.8 769 782.6 938 720(550)
UCT g2 /4 [f/g] 14.574 2.1 1.3 [5.935] 25.325 2.923 16.081(10.089)
A 2200 1200 1450 2144 2092 2012(2200)
m 138.03 548.8 769 782.6 938 693.66(562.07)

Our calculations of the R matrices and deuteron
wave functions that meet the equations (15) and (20)
are twofold. On the one hand, we will check
reliability of our numerical procedure. On the other
hand, we would like to show similarities and
discrepancies between our results and those by the
Bonn group. These results are depicted in Figs. 1
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and 2. In case of the UCT potential after parameters
fitting (Table) we have for the deuteron binding
energy ¢&,=2.224 MeV and for the D-state
probability P, =5.494 % (in case of Bonn potential
g, =2.223 MeV and P, =4.986 %). More detailed

discussion can be found in [5, 6].
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Fig. 1. The S, neutron-proton phase shift and the corresponding off-shell potential. Solid curves calculated for

Potential B. Dashed (dotted) — for UCT potential with Potential B (UCT) parameters from the Table

momentum p, is fixed to 265 MeV.
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Fig. 2. Deuteron wave functions u(q) =y (p) and w(q) = (p) . Other notations as in Fig. 1.

Summary

We have seen how starting from the field
Hamiltonian one can reduce a very complex field-
theoretical problem to an approximate description
typical of the relativistic quantum mechanics. The
method of UCTs has turned out to be appropriate in
achieving this aim.

In particular, since the two representations, CPR
and BPR, are unitarily equivalent the description of
the N —N scattering can be reduced to the three-
dimensional LS-type equation for the 7 -matrix in
momentum space. Such a conversion becomes

possible owing to the property of K!* to leave the

two-nucleon sector and its separate subsectors to be
invariant.

Special attention has been paid to the elimination
of auxiliary field components. We encounter such a
necessity for interacting vector and fermion fields
when in accordance with the canonical formalism
the interaction Hamiltonian density embodies not
only a scalar contribution but nonscalar terms too. It
has proved (at least, for the primary poN and wN

couplings) that the UCT method allows us to remove
such noncovariant terms directly in the Hamiltonian.
To what extent this result will take place in higher
orders in coupling constants it will be a subject of
further explorations.
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TEOPETHUKO-ITIOJIOBUM PO3IJIAJ IBOHYKJIOHHUX CUCTEM:
HYKJIOH-HYKJIOHHE PO3CISIHHSI TA BJACTHUBOCTI JEWTPOHA

€. 0. Iy6oBux

“Clothing” mpouenypa y KBaHTOBIii Teopil MO 3aCTOCOBYETHCS [UIS ONMHCY HYKIIOH-HYKIIOHHOTO PO3CIFOBaHHS Ta
BIacTHBOCTEH neliTpoHa. Po3rismaersest cucrema (epMiOHHHX 1 ME30HHHX IOJIB, IO B3a€EMOJIIOTH 32 JIOTIOMOTOIO

3B'13Ky Tumy FOKaBH, AJsi BBEAGHHS MOTPIHHOT B3a€MOIl MK “TOJMMHK~ YaCTHHKaMH. BUKOPHCTOBYIOUHM cClieliajibHe
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VHITapHE TIepETBOPEHHS, IOBHUN TaMiIbTOHIaH CHCTEMH BHPaKA€THCS Yepe3 HOBI OIEpaTOpPH HAPOKCHHS/3HUIIICHHS
Uit “OJSITHEHUX” YacTMHOK (KBa3i4aCTHMHOK Hamoro minaxony). OCHOBHa yBara HpPUAUIIETHCS EPMITIBCHKHM, HE
3aJIeKHUM BiJ] €Heprii omeparopaM B3aeMoii (KBasimoTeHmianaM) MK “OISTHEHHMH HYKJIOHaMH, IT0OYJOBaHUM Y
JPYTOMY MOPSIKY 3a KOHCTaHTaMH B3aeMOJil. JlaHi KBa3iMOTCHINAIY € SApaMy IHTCTPAIbHUX PIBHIHB JIs T-MaTpuil
HYKJIOH-HYKJIOHHOTO PO3CISIHHS 1 JEWTPOHHOI XBHJIBOBOI (YHKIIT B iMIyIbCHOMY mpencraBieHHi. OOroBOpro€eThCs
BIIMIHHICTh OTPUMAHHUX KBa3IMMOTCHI[AIIB 1 OOHHCHKOTO MOTEHIiany. YHCeNbHHUI PO3B 30K PIBHAHB MOPIBHIOETHCS 3
AHAJIOTIYHAMH pe3yIbTaTaMi OOHHCHKOI TPYTIH.
Knrouosi crosa: kBaHTOBA TEOPis OIS, HYKJIOH-HYKIOHHE PO3CISTHHS, IEHTPOH, OOHHCHKHIA TOTEHITiaI.

TEOPETHUKO-IIOJIEBOE PACCMOTPEHUME JIBYXHYKJ/IOHHBIX CUCTEM:
HYKJIOH-HYKJIOHHOE PACCESIHUE U CBOMCTBA JENTPOHA

E. A. ly0oBux

“Clothing” npornenypa B KBaHTOBOH TEOPHH OIS NPUMEHSETCS U ONMCAHUSI HyKJIOH-HYKJIIOHHOTO paccesHus U
CBOICTB meiiTpoHa. PaccmarpuBaercst cuctemMa (pepMHOHHBIX M ME3OHHBIX TIOJICH, B3aMMOICHCTBYIOMINX MTOCPEICTBOM
cBsi3u Tuna KOkaBsl, U1 BBEACHHUS TPOWHOTO B3aMMOJICHCTBHSA MEKAY “TOJBIMU yacTHIAMH. Mcrons3ys crienuanbHoe
YHUTapHOE MpeoOpa3oBaHME, ITOJNHBIH TaMHJIbTOHHAH CHCTEMBI BBIPAXKAETCS Yepe3 HOBBIE OIEpaToOpbl POXKIIe-
HUS/YHUYTOKEHHUS I “OmeThIX” dYacTul (KBa3WM4acTWI[ Hamero noaxona). OCHOBHOE BHHMaHHE YIEISIETCS
SPMHUTOBCKHMM, HE 3aBUCSIINM OT SHEPTHH OIEpaTopaM B3aWMOJICHCTBUS (KBa3HUIOTCHIHAIAM) MEXIY ‘‘OIeThIMH
HYKJIOHaMH, IIOCTPOCHHBIM BO BTOpPOM IMOPSAAKE I10 KOHCTAaHTaM B3aHMO}1€ﬁCTBHH. I[aHHLIe KBa3UIIOTCHI M AJIbI
SABJIAIOTCS ApaMM HMHTErPalbHBIX YPAaBHEHHHM i1 T-mMaTpuibl HYKJIOH-HYKJIOHHOIO DPAacCEesHHUs U ACUTPOHHOMI
BOJIHOBOI1 q)yHKHI/II/I B MMITYJIbCHOM MPCACTaBJICHUU. O6cy>1<;1a}oTc;1 pasanyiusa MOJYYCHHBIX KBAa3UIIOTCHIIMAJIOB M
OOHHCKOTO ToTeHnrana. YnciaeHHoe pelleHre YpaBHEHUI CpaBHHBAETCS C aHAIOTHYHBIMH pe3yJbTaTaMi OOHHCKOH
TpyIIIBL.

Kniouegvie cnosa: KBaHTOBAsI TEOPHSI OIS, HYKJIOH-HYKJIIOHHOE paccesiHue, eUTpoH, OOHHCKHUI MOTeHINAI.
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