ЯДЕРНА ФІЗИКА ядерна фізика та енергетика 2010, т. 11, № 4, с. 355 - 361

УДК 539.171 / 539.172

РЕАКЦІЯ ⁷Li(¹⁸O, ¹⁷N)⁸Be ТА ПОТЕНЦІАЛ ВЗАЄМОДІЇ ЯДЕР ¹⁷N + ⁸Be

© 2010 А. Т. Рудчик¹, Ю. М. Степаненко¹, А. А. Рудчик¹, О. А. Понкратенко¹, Є. І. Кощий², С. Клічевскі³, К. Русек⁴, А. Будзановскі³, С. Ю. Межевич¹, Вал. М. Пірнак¹, І. Сквірчиньска³, Р. Сюдак³, Б. Чех³, А. Щурек³, Я. Хоіньскі⁵, Л. Гловацка⁶

> ¹ Інститут ядерних досліджень НАН України, Київ ² Харківський національний університет, Харків ³ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща ⁴ Інститут ядерних досліджень ім. А. Солтана, Варшава, Польща ⁵ Лабораторія важких іонів Варшавського університету, Варшава, Польща ⁶ Інститут прикладної фізики Військово-технічного університету, Варшава, Польща

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{7}\text{Li}({}^{18}\text{O}, {}^{17}\text{N}){}^{8}\text{Be}$ для основних станів ядра ${}^{17}\text{N}$ при енергії $E_{\text{лаб.}}({}^{18}\text{O}) = 114$ МеВ. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій (МЗКР) для одно- і двоступінчастих передач нуклонів і кластерів. У МЗКР-розрахунках для вхідного каналу реакції використано оптичний потенціал, отриманий з аналізу даних пружного розсіяння ядер ${}^{7}\text{Li} + {}^{18}\text{O}$, та спектроскопічні амплітуди нуклонів і кластерів, обчислені за оболонковою моделлю. Визначено оптичний потенціал взаємодії нестабільних ядер ${}^{8}\text{Be} + {}^{17}\text{N}$ за експериментальні дані даними реакції. Досліджено внески різноманітних одно- та двоступінчастих передач нуклонів і кластерів у перерізи реакції ${}^{7}\text{Li}({}^{18}\text{O}, {}^{17}\text{N})^{8}\text{Be}$.

Ключові слова: ядерні реакції, оптична модель, метод зв'язаних каналів реакцій, фолдінг-модель, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

Вступ

Вивчення властивостей нестабільних (екзотичних) ядер за допомогою ядерних реакцій з важкими іонами – одна з актуальних тем ядерної фізики. Досліджуються механізми реакцій з виходом нестабільних ядер, їхня взаємодія з іншими ядрами, структура, форма ядер тощо. Використовуються такі реакції і для отримання вторинних пучків радіоактивних іонів, що застосовуються для вивчення їхніх властивостей у прямих експериментах.

У цій роботі представлено результати дослідженя реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве при енергії $E_{\text{лаб.}}(^{18}\text{O}) = 114 \text{ MeB}$ з виходом нестабільних ядер ⁸Ве і ¹⁷N, дослідити взаємодію яких неможливо в прямих експериментах за допомогою радіоактивних пучків. Відомостей про дослідження цієї реакції іншими авторами в літературі немає.

Вимірювання диференціальних перерізів цієї реакції відбувалось одночасно з вимірюванням пружного й непружного розсіяння ядер ⁷Li + ¹⁸O [1], що забезпечило можливість використання цих даних для визначення оптичного потенціалу взаємодії ядер ⁷Li + ¹⁸O, необхідного для дослідження реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве за сучасними теоріями ядерних реакцій, зокрема за методом зв'язаних каналів реакцій (МЗКР).

Крім уперше отриманних експериментальних даних реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be, у роботі було виконано розрахунки спектроскопічних амплітуд нуклонів і кластерів в ядрах за оболонковою моделлю, необхідних для МЗКР-аналізу цих даних. Для повноти МЗКР-аналізу експериментальних даних залишалось лише визначити параметри оптичного потенціалу взаємодії ядер вихідного каналу реакції ${}^{8}\text{Be} + {}^{17}\text{N}$, що було здійснено методом підгонки з використанням отриманих даних. Цей потенціал порівнюється з раніше дослідженими оптичними потенціалами взаємодії ядер ${}^{8}\text{Be} + {}^{15}\text{N}$ [2], ${}^{8}\text{Be} + {}^{13}\text{C}$ [3], ${}^{8}\text{Be} + {}^{9}\text{Be}$ [4], ${}^{8}\text{Li} + {}^{17}\text{O}$ [5, 6] та ${}^{7}\text{Li} + {}^{18}\text{O}$ [1].

Методика експерименту

Вимірювання диференціальних перерізів реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве проводилось одночасно з пружним і непружним розсіянням ядер ⁷Li + ¹⁸O на Варшавському циклотроні C-200P, використовуючи пучок іонів ¹⁸O з енергією $E_{\text{паб.}}(^{18}O) =$ = 114 MeB [1]. Розкид енергії пучка іонів на мішені не перевищував 0,5 %. В експерименті використовувалась самопідтримна (без підкладки) мішень природного літію (⁷Li - 92,5 %) товщиною ~ 900 мкг/см².

Для реєстрації та ідентифікаціїї продуктів реакцій використовувалась ΔE -E-методика. Спектрометри складались з кремнієвих ΔE - і E-детекторів товщинами 67 мкм і 1 мм відповідно. В експерименті використовувалась електроніка стандарту САМАС. Накопичення та сортування експериментальної інформації у вигляді двовимірних $\Delta E(E)$ -спектрів здійснювалось за допомогою комп'ютерної системи SMAN [7]. Детальний опис експериментальної установки міститься в роботі [8].

Типовий двовимірний $\Delta E(E)$ -спектр ізотопів азоту показано на рис. 1. Видно, що експериментальна методика забезпечувала надійну ідентифікацію ізотопів азоту ^{14, 15, 16, 17}N.

Типовий спектр ядер ¹⁷N – продуктів реакції $^{7}\text{Li}(^{18}\text{O}, ^{17}\text{N})^{8}\text{Be}$ з вилученим неперервним фоном, зумовленим реакціями типу ${}^{7}Li({}^{18}O, {}^{17}N) \alpha \alpha$, представлено на рис. 2. Процедура вилучення фону наведена в роботі [10]. Криві - наближення спектра гауссіанами

$$N(E) = \sum_{i} N_{i} \exp\left(-0.5 \frac{(E - E_{i})^{2}}{h_{i}^{2}}\right),$$
 (1)

площа яких використовувалась для обчислення диференціальних перерізів реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be. При наближенні спектрів підганялись лише параметри N_i. Параметри E_i дорівнювали відповідним кінетичним енергіям ядер ¹⁷N, а параметри h_i покладались рівними напівширині ізольованого піка з великим числом відліків та становили 0,4 МеВ. При цьому похибки в обчисленні площ ізольованих гауссіанів не перевищували 20 %, а частково перекритих – 30 - 40 %. Диференціальні перерізи реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве нормувались з використанням множника нормування перерізів пружного розсіяння ядер 7 Li + 18 O [1]. Похибка абсолютизації перерізів реакції 7 Li(18 O, 17 N) 8 Be не перевищувала 20 %.

Експериментальні диференціальні перерізи ⁷Li(¹⁸O, ¹⁷N)⁸Be реакції при енергії $E_{\text{паб}}(^{18}\text{O}) = 114 \text{ MeB}$ показано на рис. 3 - 6.

Аналіз експериментальних даних

Методи розрахунків

У МЗКР-аналізі експериментальних даних ⁷Li(¹⁸O, ¹⁷N)⁸Be реакції при енергії $E_{\text{паб}}$ (¹⁸O) = 114 MeB для вхідного та вихідного

Рис. 2. Типовий енергетичний спектр ядер ¹⁷N з реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве при енергії $E_{\rm лаб}(^{18}O) = 114$ MeB. Позначення над піками відповідають енергіям основного й збуджених станів ядра ¹⁷N. Рівень 3,03 - енергія збудженого ⁸Ве в ядрі віддачі [9]. Криві – наближення спектра гауссіанами.

каналів реакції використовувався потенціал типу Вудса - Саксона з об'ємним поглинанням

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(2)

та кулонівський потенціал рівномірно зарядженої кулі

$$V_{c}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{c}^{2}) / 2R_{c}, & r \le R_{c}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{c}, \end{cases}$$
(3)

 $\text{Ae } R_i = r_i (A_P^{1/3} + A_T^{1/3}) \ (i = V, W, C); A_P, Z_P \ i A_T, Z_T$ - маси й заряди іона ¹⁸О (або ядра ¹⁷N) та ядра мішені ⁷Li (або ядра ⁸Be); *е* - заряд електрона. В усіх розрахунках параметр $r_c = 1.25$ фм.

Для вхідного каналу реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве використовувався оптичний потенціал, отриманий з аналізу даних пружного й непружного розсіяння ядер ${}^{7}Li + {}^{18}O[1]$. Параметри цього потенціалу подано в табл. 1.

Параметри $X_i = \{V_0, r_V, a_V, W_S, r_W, a_W\}$ потенціалу ⁸Be + ¹⁷N визначались за даними реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве методом підгонки, використовуючи при цьому в МЗКР-розрахунках спектроскопічні амплітуди переданих у реакції нуклонів і кластерів, обчислені за трансляційно-інваріантною моделлю оболонок (ТІМО) [11]. Спектроскопічні амплітуди S_x нуклонів і кластерів в системах A = C + x подано в табл. 2.

Система ядер	$E_{\rm c.u.m.}, {\rm MeB}$	V ₀ , MeB	<i>r_V</i> , фм	<i>а</i> _V , фм	W _s , MeB	<i>r_w,</i> фм	<i>а_W</i> , фм	Літ.
$^{7}\text{Li} + {}^{18}\text{O}$	31,92	174,5	0,806	0,900	13,0	1,47	0,900	[1]
${}^{8}\text{Be} + {}^{17}\text{N}$	33,23	174,5	0,800	0,900	7,0	1,25	0,900	
${}^{8}\text{Li} + {}^{17}\text{O}$	25,91	183,9	0,802	0,700	5,0	1,20	0,700	[5, 6]
${}^{8}\text{Be} + {}^{15}\text{N}$	29,20	252,6	0,796	0,400	4,3	1,25	0,400	[2]
$^{8}\text{Be} + ^{9}\text{Be}$	24,79	192,4	0,788	0,678	9,0	1,60	0,678	[4]
${}^{8}\text{Be} + {}^{13}\text{C}$	31,14	170,2	0,793	0,760	7,0	1,25	0,760	[3]

Таблиця 1. Параметри оптичних потенціалів

Таблиця 2. Спектроскопічні амплітуди S_x кластерів та нуклонів x у системах A = C + x

A	С	x	nL_i	S_x	A	С	x	nL_i	S_x
⁷ Li	⁴ He	t	$2P_{3/2}$	-1,091	$^{18}O_{1,982}^{*}$	$^{17}N_{1,907}^{*}$	Р	$1P_{1/2}$	$0,279^{(a)}$
⁷ Li	⁵ He	d	$2S_1$	$-0,674^{(a)}$				$1P_{3/2}$	-0,149
			$1D_1$	$-0,121^{(a)}$	$^{18}O_{3,555}^{*}$	$^{17}N_{1,907}^{*}$	Р	$1P_{3/2}$	0,976
			$1D_3$	$0,676^{(a)}$	$^{18}O_{3,921}^{*}$	$^{17}N_{1,907}^{*}$	Р	$1P_{1/2}$	$0,279^{(a)}$
⁷ Li	⁶ Li	n	$1P_{1/2}$	-0,657				$1P_{3/2}$	-0,149
			$1P_{3/2}$	$-0,735^{(a)}$	$^{18}O_{5,260}^{*}$	$^{17}N_{1,907}^{*}$	Р	$1P_{1/2}$	$0,279^{(a)}$
⁸ Be	⁵ He	³ He	$2P_{3/2}$	$-1,102^{(a)}$				$1P_{3/2}$	-0,149
⁸ Be	⁴ He	α	$3S_0$	1,225	$^{18}O_{4,456}^{*}$	$^{17}N_{2,526}^{*}$	Р	$1P_{3/2}$	$-1,179^{(a)}$
⁸ Be	⁶ Li	d	$2S_1$	1,217	$^{18}O_{5,098}^{*}$	$^{17}N_{2,526}^{*}$	Р	$1P_{3/2}$	0,629
⁸ Be	⁷ Li	р	$1P_{3/2}$	$1,234^{(a)}$	$^{18}O_{6,201}^{*}$	$^{17}N_{2,526}^{*}$	Р	$1P_{3/2}$	$-1,179^{(a)}$
⁹ Be	⁷ Li	d	$2S_1$	$-0,226^{(a)}$	¹⁸ O [*] _{3,555}	$^{17}N_{3,129}^{*}$	Р	$1P_{1/2}$	-0,861
			$1D_1$	$0,111^{(a)}$				$1P_{3/2}$	$-0,727^{(a)}$
			$1D_{3}$	$-0,624^{(a)}$	¹⁸ O	$^{17}N_{3,204}^{*}$	Р	$1P_{3/2}$	$1,695^{(a)}$
⁹ Be	⁸ Be	n	$1P_{3/2}$	0,866	$^{18}O_{3,555}^{*}$	$^{17}N_{3,629}^{*}$	Р	$1P_{1/2}$	-0,861
^{10}B	⁷ Li	³ He	$2P_{3/2}$	0,419				$1P_{3/2}$	$-0,727^{(a)}$
			$1F_{5/2}$	$-0,104^{(a)}$	¹⁸ O	$^{17}N_{3,663}^{*}$	Р	$1P_{1/2}$	$1,198^{(a)}$
			$1F_{7/2}$	0,347	¹⁸ O	$^{17}N_{3,906}^{*}$	Р	$1P_{3/2}$	$1,695^{(a)}$
^{10}B	⁸ Be	d	$1D_{3}$	0,811	$^{18}O_{4,456}^{*}$	$^{17}N_{4,006}^{*}$	Р	$1P_{1/2}$	$-0,439^{(a)}$
11 B	⁷ Li	α	$3S_0$	-0,638				$1P_{3/2}$	0,196
	_		$2D_2$	-0,422	$^{18}O_{4,456}^{*}$	$^{17}N^{*}_{4,209}$	Р	$1P_{3/2}$	$-0,589^{(a)}$
^{11}B	⁸ Be	t	$2P_{3/2}$	0,641	¹⁸ O	¹⁷ N [*] _{4,415}	Р	$1P_{3/2}$	$1,695^{(a)}$
¹⁷ N	^{14}C	t	$1P_{1/2}$	0,466	¹⁸ O	¹⁷ N [*] _{5,514}	Р	$1P_{3/2}$	$1,695^{(a)}$
¹⁷ N	^{15}C	d	$1P_1$	$0,240^{(a)}$	$^{18}O_{4,456}^{*}$	$17N_{5,772}^{*}$	Р	$1P_{1/2}$	-0,393
¹ /N	¹⁶ N	n	$1D_{3/2}$	-1,008	10			$1P_{3/2}$	$-0,556^{(a)}$
¹⁸ O	^{14}C	α	$4S_0$	-0,802	¹⁹ O	¹⁷ N	D	$1F_2$	-0,209
^{18}O	^{15}C	³ He	$3S_{1/2}$	$-0,903^{(a)}$	10	10		$1F_3$	$-0,056^{(a)}$
¹⁸ O	¹⁶ N	d	$2P_2$	-1,304	¹⁹ O	¹⁸ O	Ν	$1D_{5/2}$	-0,882
¹⁸ O	¹⁷ N	р	$1P_{1/2}$	1,198 ^(a)	20 F	¹⁷ N	ЗНе	$3P_{3/2}$	-0,103
¹⁸ O	$^{17}N_{1,374}^{*}$	р	$1P_{3/2}$	$1,695^{(a)}$		10		$2F_{5/2}$	-0,105
¹⁸ O [*] _{4,456}	$1^{1}N_{1,850}^{*}$	р	$1P_{1/2}$	-0,393	²⁰ F	¹⁸ O	D	$2D_2$	0,380
10 *	17 *		$1P_{3/2}$	$-0,556^{(a)}$	21 F	¹ /N	А	$3F_3$	0,059
¹⁸ O [*] _{6,198}	$1^{1}N_{1,850}^{*}$	р	$1P_{1/2}$	-0,393	21 F	¹⁸ O	Т	$3D_{5/2}$	-0,001
			$1P_{3/2}$	$-0,556^{(a)}$					

 $^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

У МЗКР-розрахунках у систему зв'язку каналів включались пружне й непружне розсіяння ядер ⁷Li + ¹⁸О для переходів ядер ⁷Li i ¹⁸О у збуджені стани з параметрами деформації цих ядер, отриманих у роботі [1], та найважливіші реакції передач, діаграми яких показано на рис. 7.

Хвильові функції зв'язаного стану частинок x у системі A = C + x обчислювались стандартним способом – підгонкою глибини V дійсного потенціалу Вудса - Саксона при $a_V = 0,65$ фм та $r_V = 1,25A^{1/3}/(C^{1/3} + x^{1/3})$ фм, використовуючи енергію зв'язку частинки x у цій системі як дані для підгонки.

Для розрахунків спектроскопічних амплітуд використовувалась програма DESNA [12, 13], а M3КР-розрахунки проводились за допомогою програми FRESCO [14].

Реакція ⁷Li(¹⁸O, ¹⁷N)⁸Be

Експериментальні диференціальні перерізи реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве при енергії $E_{\rm лаб}(^{18}O) = 114$ МеВ для основних станів ядер ⁸Ве та ¹⁷N наведено на рис. 3.

Диференціальні перерізи цієї реакції поміряно лише для кутів $\theta_{c.ц.м.} < 90^{\circ}$. Вимірювання на більші

кути обмежувало поглинання ¹⁷N в *ДЕ*-детекторі та неможливість реєстрації нестабільного ядра

⁸Be, за вильотом якого на малі кути можна було б визначити розсіяння ¹⁷N на великі кути.

Диференціальні перерізи реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве для збуджених станів ядра ¹⁷N [15] показано на рис. 4, 5 і 6. Як і в попередньому випадку, у цій реакції домінує передача протона. МЗКР-розрахунки для цієї передачі показано на рис. 4, 5 і 6 кривими. Для нерозділених в експерименті станів ядра ¹⁷N показано МЗКР-перерізи для окремих рівнів та їхні некогерентні суми Σ_{p} .

Спектроскопічні амплітуди протонів S_p у системах ¹⁸O = ¹⁷N^{*} + р дорівнюють нулю для збу-

$\frac{{}^{7}\text{Li} {}^{8}\text{Be}}{\stackrel{18}{\longrightarrow} {}^{p}} + \frac{{}^{7}\text{Li} {}^{7}\text{Li} {}^{8}\text{Be}}{\stackrel{18}{\longrightarrow} {}^{p}} + \frac{{}^{7}\text{Li} {}^{8}\text{Be}}{\stackrel{18}{\longrightarrow} {}^{18}\text{O} {}^{18}\text{O} {}^{17}\text{N}} +$	$\xrightarrow{7_{\text{Li}} 9_{\text{Be}} 8_{\text{Be}}}_{18_{\text{O}} 16_{\text{N}} 17_{\text{N}}} +$	$\frac{\stackrel{7_{\text{Li}} ^{6}_{\text{Li}} ^{8}_{\text{Be}}}{\stackrel{n}{} \stackrel{d}{} \stackrel{d}{} + \frac{18_{\text{O}} ^{19}_{\text{O}} ^{17}_{\text{N}}}$
$\frac{7_{\text{Li}} \ {}^{11}\text{B} \ {}^{8}\text{Be}}{\alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{{}^{7}\text{Li} {}^{5}\text{He} {}^{8}\text{Be}}{{}^{d}} + {}^{3}\text{He}}{{}^{18}\text{O} {}^{20}\text{F} {}^{17}\text{N}} +$	$\begin{array}{c c} {}^{7}\text{Li} & {}^{10}\text{B} & {}^{8}\text{Be} \\ \hline \\ \hline {}^{3}\text{He} & & d \\ \hline \\ \hline {}^{3}\text{He} & {}^{15}\text{C} & {}^{17}\text{N} \end{array}$

Рис. 7. Діаграми одно- та двоступінчастих передач нуклонів і кластерів у реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be.

джених станів 1,85 MeB (1/2⁺), 1,907 MeB (5/2⁻), 2,526 MeB (5/2⁺), 3,129 MeB (7/2⁻), 3,629 MeB (7/2⁻), 4,006 MeB (3/2⁺), 4,209 MeB (5/2⁺) і 5,772 MeB (1/2⁺) ядра ¹⁷N. Тому для опису диференціальних перерізів реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be із збудженням станів 1,85 MeB (1/2⁺) + 1,907 MeB (5/2⁻) ядра ¹⁷N, нерозділених в експерименті, використовувався двоступінчастий процес з початковим збудженням станів 4,456 MeB (1⁻) і 6,198 MeB (1⁻) ядра ¹⁸O (утворення систем ¹⁸O^{*} = ¹⁷N^{*} + p) і наступною передачею протонівдля збудження стану 1,85 MeB (1/2⁺) ядра ¹⁷N у

Рис. 8. Оптичні потенціали взаємодії ядер ⁸Be + ¹⁷N, ⁸Be + ¹⁵N [2] та ⁸Li + ¹⁷O [6].

Для взаємодії ядер ⁸Be + ¹⁷N було розраховано фолдінг-потенціал (потенціал згортки) за моделлю подвійної згортки (double folding)

$$V(r) = \int \rho_P(r_P) \rho_T(r_T) \upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) d^3 r_P d^3 r_T , \quad (4)$$

де $\rho_P(r_P)$, $\rho_T(r_T)$ - розподіли густин нуклонів у ядрах ¹⁷О і ⁸Ве відповідно, $\upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) = \upsilon(s)$ нуклон-нуклонний потенціал, \vec{r} - відстань між центрами ядер. У розрахунках використовувався потенціал нуклон-нуклонної взаємодії МЗҮ Рейда (Reid) з обмінним псевдопотенціалом

$$\upsilon(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \ (1 - 0.005 \frac{E_{\text{na6.}}}{A}) \ \frac{\delta(s)}{s},$$
(5)

цій реакції, а також такий же процес із збудженням станів 1,982 МеВ (2⁺), 3,555 МеВ (4⁺), 3,921 МеВ (2⁺) і 5,26 МеВ (2⁺) ядра ¹⁸О та наступними передачами протонів для збудження стану 1,907 МеВ (5/2⁻) ядра ¹⁷N. Цей двоступінчастий процес із використанням систем ¹⁸O^{*} = ¹⁷N^{*} + р застосовувався для опису реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be і для інших вищезазначених станів ядра ¹⁷N, для яких одноступінчаста передача протона заборонена. Спектроскопічні амплітуди протонів у системах ¹⁸O^{*} = ¹⁷N^{*} + р подано в табл. 2.

Параметри потенціалу взаємодії ядра ¹⁷N у збуджених станах з ядром ⁸Ве виявились такими ж, як для основного стану ¹⁷N (див. табл. 1). Для порівняння в табл. 1 подано також набори параметрів потенціалів взаємодії ядер ⁸Ве + ¹⁵N [2], ⁸Ве + ¹³С [3], ⁸Ве + ⁹Ве [4] та ⁸Li + ¹⁷O [5, 6]. На рис. 8 оптичний потенціал ⁸Ве + ¹⁷N порівнюються з потенціалами ⁸Ве + ¹⁵N та ⁸Li + ¹⁷O. Видно, що серед цих потенціалів найбільшу протяжність має потенціал ⁸Ве + ¹⁷N.

Рис. 9. Порівняння дійсної частини потенціалу взаємодії ядер ⁸Ве + ¹⁷N (суцільна крива) з фолдінг-потенціалом (штрихова крива).

де $E_{\text{лаб.}}$ і A - кінетична енергія та маса налітаючого іона відповідно.

При обчисленні потенціалу V(r) взаємодії ядер ⁸Be + ¹⁷N використовувались розподіл нуклонів в ядрі ⁸Be [16] та розподіл зарядів в ядрі ¹⁵N [17]. Фолдінг-потенціал взаємодії ядер ⁸Be + ¹⁷N обчислювався за допомогою програми DFPOT [18, 19].

Фолдінг-потенціал взаємодії ядер ⁸Ве + ¹⁷N показано на рис. 9 у порівнянні з дійсною частиною поценціалу взаємодії цих ядер. Видно, що ці потенціали мало відрізняються між собою в інтервалі відстаней від 2 до 7 фм, де в основному відбуваються ядерні процеси. Тому заміна дійсної частини потенціалу взаємодії ядер ⁸Ве + ¹⁷N на фолдінг-потенціал незначно впливає на МЗКР-перерізи реакції ⁷Li(¹⁸O, ¹⁷N)⁸Ве.

Основні результати та висновки

Поміряно диференціальні перерізи реакції 7 Li(18 O, 17 N) 8 Be при енергії $E_{na6.}(^{18}$ O) = 114 MeB для переходів ядер 8 Be і 17 N в основні стани та на рівні

1,374 MeB (3/2⁻), 1,850 MeB (1/2⁺) + 1,907 MeB (5/2⁻), 2,526 MeB (5/2⁺), 3,129 MeB (7/2⁻) + 3,204 MeB (3/2⁻), 3,629 MeB (7/2⁻) + 3,663 MeB (1/2⁻), 3,906 MeB (5/2⁻) + 4,006 MeB (3/2⁻), 4,209 MeB (5/2⁺) + 4,415 MeB (3/2⁻) i 5,515 MeB (3/2⁻) + ,772 MeB (1/2⁺)

ядра ¹⁷N. Реакцію досліджено вперше.

Експериментальні дані реакції ⁷Li(18 O, 17 N)⁸Ве проаналізовано за методом зв'язаних каналів реакцій, включаючи у схему зв'язку каналів пружне й непружне розсіяння ядер ⁷Li + 18 O та найбільш імовірні реакції передач. Досліджено вне-

- Rudchik A. A., Rudchik A. T., Kliczewski S. et al. Elastic and inelastic scattering of ⁷Li + ¹⁸O versus ⁷Li + ¹⁶O // Nucl. Phys. A. 2007. Vol. 785. P. 293 306.
- Rudchik A. A., Rudchik A. T., Budzanowski A. et al. Mechanism of ¹²C(¹¹B, ¹⁵N)⁸Be reaction and ⁸Be + ¹⁵N optical-model potential // Eur. Phys. J. A. - 2005. -Vol. 23. - P. 445 - 452.
- Rudchik A. T., Momotyuk O. A., Budzanowski A. et al. Energy dependence of the ⁸Be + ¹³C interaction // Nucl. Phys. A. - 1999. - Vol. 660. - P. 267 - 279.
- Romanyshyn V. O., Rudchik A. T., Kemper K. W. et al. ⁸Be scattering potentials from reaction analyses // Phys. Rev. C. - 2009. - Vol. 79. - P. 054609-1 -054609-7.
- Rudchik A. A., Stepanenko Yu.M., Kemper K. W. et al. ⁸Li optical potential from ⁷Li(¹⁸O, ¹⁷O)⁸Li reaction analysis // Nucl. Phys. A. - 2009. - Vol. 831. - P. 139 -149.
- Рудчик А. Т., Степаненко Ю. М., Рудчик А. А. та ін. Реакція ⁷Li(¹⁸O, ¹⁷O)⁸Li та потенціал взаємодії ядер ¹⁷O + ⁸Li // Ядерна фізика та енергетика. -2009. - Т. 10, № 2. - С. 138 - 145.
- Kowalczyk M. SMAN: A Code for Nuclear Experiments. Warsaw, 1998. 32 p. (Report/ Warsaw University).
- Чернієвський В. К, Русек К., Будзановскі А. та ін. Експериментальна установка для дослідження ядерних реакцій на Варшавському циклотроні U-200P // Зб. наук. праць Ін-ту ядерних досл. -2002. - № 2 (8). - С. 216 - 224.
- Tilley D.R., Kelley J.H., Godwin J.L. et al. Energy Level of Light Nuclei A = 8, 9, 10 // Nucl. Phys. A. -2004. - Vol. 745, Is. 3-4. - P.155 - 362.
- 10. Романишин В. О., Рудчик А. Т., Кощий С.І. та ін.

ски різних механізмів передач нуклонів і кластерів. Установлено, що в цій реакції домінує передача протона. Внески двоступінчастих передач нуклонів і кластерів у реакцію ⁷Li(¹⁸O, ¹⁷N)⁸Be незначні.

Визначено параметри оптичного потенціалу взаємодії ядер ${}^{8}\text{Be} + {}^{17}\text{N}$ за експериментальними даними реакції ${}^{7}\text{Li}({}^{18}\text{O}, {}^{17}\text{N}){}^{8}\text{Be}$, використовуючи в МЗКР-розрахунках для вхідного каналу реакції оптичний потенціал взаємодії ядер ${}^{7}\text{Li} + {}^{18}\text{O}$, отриманий з аналізу експериментальних даних пружного розсіяння цих ядер, та спектроскопічні амплітуди, обчислені за трансляційно-інваріантною моделлю оболонок.

Для взаємодії ядер ⁸Be + ¹⁷N розраховано фолдінг-потенціал за моделлю подвійної згортки, з яким добре узгоджується дійсна частина оптичного потенціалу ⁸Be + ¹⁷N, визначеного за даними реакції ⁷Li(¹⁸O, ¹⁷N)⁸Be.

СПИСОК ЛІТЕРАТУРИ

Механізми реакції ⁷Li(¹⁰B, ⁹Be)⁸Be, ¹⁰B(⁷Li, ⁹Be)⁸Be та потенціал взаємодії ядер ⁸Be + ⁹Be // Ядерна фізика та енергетика. - 2008. - № 2 (24). - С. 24 - 33.

- Smirnov Yu. F., Tchuvil'sky Yu. M. Cluster spectroscopic factors for the p-shell nuclei // Phys. Rev. C. -1977. - Vol. 15. - P. 84 - 93.
- 12. Рудчик А. Т., Чувильский Ю. М. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - Киев, 1982. - 27 с. - (Препр. / АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- Рудчик А. Т., Чувильский Ю. М. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 -825.
- Thompson I. J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. -Vol. 7. - P. 167 - 212.
- 15. Tilley D.R., Weller H.R., Cheves C.M. Energy Level of Light Nuclei A = 17 // Nucl. Phys. A. - 1993. -Vol. 564. - P. 1 - 183.
- 16. Mohr P., Abele H., Kölle V. et al. Properties of ⁸Be and ¹²C deduced from the folding-potential model // Z. Phys. A. 1994. Vol. 349. P. 339 340.
- 17. De Vries H., De Jager C. W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering // Atomic data and nuclear data tables. 1987. Vol. 36. P. 495 536.
- Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. - 1982.
 - Vol. 25, Is. 2. - P. 125 - 139.
- Cook J. DFPOT a program for the calculation of double folded potentials // Ibid. - 1984. - Vol. 35. -P. C - 775.

РЕАКЦИЯ ⁷Li(¹⁸O, ¹⁷N)⁸Be И ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ЯДЕР ¹⁷N + ⁸Be

А. Т. Рудчик, Ю. М. Степаненко, А. А. Рудчик, О. А. Понкратенко, Е. И. Кощий, С. Кличевски, К. Русек, А. Будзановски, С. Ю. Межевич, Вал. Н. Пирнак, И. Сквирчиньска, Р. Сюдак, Б. Чех, А. Щурек, Я. Хоиньски, Л. Гловацка

Получены новые экспериментальные данные дифференциальных сечений реакции ⁷Li(¹⁸O, ¹⁷N)⁸Be для основных состояний ядер ⁸Be и ¹⁷N, а также возбужденных состояний ядра ¹⁷N при енергии $E_{\rm лаб}(^{18}O) = 114$ MeB. Экспериментальные данные проанализированы по методу связанных каналов реакций (M3KP) для одно- и двухступенчатых передач нуклонов и кластеров. В M3KP-расчетах для входного канала реакции использованы оптический потенциал, полученый из анализа данных упругого рассеяния ядер ⁷Li + ¹⁸O, и спектроскопические амплитуды нуклонов и кластеров, вычисленные в рамках оболочечной модели. Определен оптический потенциал взаимодействия нестабильних ядер ⁸Be + ¹⁷N по экспериментальным данным реакции. Исследованы вклады различных одно- и двухступенчатых передач нуклонов и кластеров в сечения реакции ⁷Li(¹⁸O, ¹⁷N)⁸Be.

Ключевые слова: ядерные реакции, оптическая модель, метод связанных каналов реакций, фолдинг-модель, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

⁷Li(¹⁸O, ¹⁷N)⁸Be REACTION AND THE ¹⁷N + ⁸Be-POTENTIAL

A. T. Rudchik, Yu. M. Stepanenko, A. A. Rudchik, O. A. Ponkratenko, E. I. Koshchy, S. Kliczewski, K. Rusek, A. Budzanowski, S. Yu. Mezhevych, Val. M. Pirnak, I. Skwirczyńska, R. Siudak, B. Czech, A. Szczurek, J. Choiński, L. Głowacka

Angular distributions of the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction were measured for the transitions to the ground states of ⁸Be and ¹⁷N and excited states of ¹⁷N at the energy $E_{lab}(^{18}O) = 114$ MeV. The data were analyzed with coupled-reaction-channels method for one- and two-step transfers of nucleons and clusters. In the analysis, the ⁷Li + ¹⁸O potential deduced in the analysis of the elastic ⁷Li + ¹⁸O-scattering data as well as shell-model spectroscopic amplitudes of transferred nucleons and clusters were used. Parameters of the ⁸Be + ¹⁷N potential were deduced using the reaction data. Contributions of different one- and two-step transfers in the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction cross-section was studied.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.

Надійшла до редакції 02.07.10, після доопрацювання - 20.12.10.